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Abstract

The advent of composite co-cured and co-bonded integrated construction in aircraft
structures has lead to the replacement of fastened joints with bonded joints between
the skins and the stiffeners. Skin-stiffener debondings could occur due to impact or
other operational reasons and it is usually internal failure. Damage identification of
bonded components, which are often vital elements in many structures, is crucial for
the prevention of failure of the entire structure. Thus, different researchers have
investigated vibration-based methods as an alternative technique to be used in the
structural health monitoring (SHM) systems. Hence, this work consists of investigating
experimentally through the vibration-based method, the dynamic behavior changes
in a bonded metal-composite structure by using piezoelectric transducer and accelerometers
in order to monitory the damage. The damage is an artificial debonding in the joint, which
was simulated by inserting Teflon™ tapes within the joint. In-situ inspection as ensured
by accelerometer and piezoelectric transducers (PZT) bonded to the structure. Indeed,
with a simple comparison of the frequency response functions is difficult to conclude
if there is damage in the structure, unless a large damage is presented. However, by
using damage metrics, it is possible to identify the damage with more accuracy. Thus,
the experimental results obtained by the accelerometers were compared to the data
provided by the smart composite sensors (PZT). Finally, it was discussed the advantages
and limitations of the experimental analyses and the identification technique proposal.

Keywords: Bonded joints; Smart composites; Experimental dynamics analyses;
Structural health monitoring
Background
During the last decades, mainly driven by the aircraft industry, shipbuilding and power

generation, numerous studies have been conducted in order to establish the use of

composite materials as an alternative safe, effective and economically viable in the de-

velopment of new products. In the case of reinforced polymeric composites, it is pos-

sible to perform assembly by a bonding process between both composite-composite

and metal-composite parts. According to Higgins (2000), adhesive bonding of aero-

nautics primary structures is intensively used on current aircraft projects as a direct al-

ternative of riveting process. However, the degradation of the adhesive layer over the

time remains an issue and the inspection of the adhesive layer is complex task since

subsurface damages must be removed. Traditional non-destructive techniques (NDT)

utilize a variety of methods, ranging from a simple tap test to more complicated ap-

proaches, like ultrasonic or thermography techniques. Each of these techniques is
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limited in accuracy and applicability. Also, a significant amount of equipment and ex-

pertise is required to perform the inspection procedures. Although there is some lim-

ited success in specific cases, in general, NDT methods have proven successful for

bond-line assessment (Qing et al. 2006a).

To overcome these limitations (accuracy and application), it is necessary to develop a

cost-effective in-service Structural Health Monitoring (SHM) system to monitor and to

assess the instantaneous state of aircraft structures. Thus, several SHM approaches

have been developed and evaluated for monitoring bonded joints. Chiu et al. (2000) de-

veloped a “perceptive repair” or smart system, which will provide information about

the in-service performance of the repair and the associated structure. The focus was

based on the identification of debonding in the adhesive layer between the repair and

the metallic parent part. Also, the authors investigated some criteria related to smart

system, such as economic, reliable and self-powered. Finally, the authors proposed that

a piezoceramic material could be used in the smart system, because of easy application.

Zou et al. (2000) presented a review on the model-based delamination identification

methods and the application of vibration-based model-dependent damage identification

methods in composite structures.

Mickens et al. (2003) developed a simple vibration-based method of damage identifi-

cation for monitoring ageing structures. The method intended to detect damage during

operation of the aircraft before the damage propagation and the catastrophic failure of

aircraft components. The technique used four piezoelectric patches alternatively as ac-

tuators and sensors in order to send and receive vibration diagnostic signals. The re-

sults obtained by the authors aided to concept a sensor tape in order to detect

damage in joints of aircraft structures. Baker et al. (2004) developed methodologies

for simulating structural health monitoring (SHM) systems considering adhesively

bonded composite repairs of Australian military aircraft. In particular, there was an

emphasis on the development of techniques for embedding optical fiber sensors to

produce SHM systems. Ogisu et al. (2006) presented a feasibility study for employ-

ing a damage monitoring system by using a PZT (piezoelectric) actuator and a Fiber

Bragg Grating (FBG) optical fiber sensor. The authors showed that it could be detected

several types of damage, such as delamination and debonding. Thus, a conceptual design

was implemented in order to employ the novel system. Compressive tests were carried out

using the coupon specimens with an embedded small-diameter or standard-diameter

optical fiber sensor. In addition, it was verified by the researchers that the coupon spe-

cimen with an embedded small-diameter optical fiber did not show any degradation of

its material properties.

Qing et al. (2006a) introduced a real-time active Smart Patch System (SPS) based on

smart layer technology for monitoring the integrity of bonded repairs. Three applica-

tions were presented: (1) monitoring of the cure progress of the bonded repair adhe-

sive, (2) identification of the initial artificial debonding between the composite patch

and the metal structure, and (3) monitoring of the damage repaired by a bonded patch,

which is under fatigue cycles. Qing et al. (2006b) investigated experimentally the effect

of adhesive thickness and its elastic modulus on the performance of adhesively bonded

piezoelectric elements, which are used for structural health monitoring. The piezo-

electric elements were adhesively bonded to aluminum plates. Hence, the experimental

results showed that an increase in adhesive thickness changes the electromechanical
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impedance and the resonant frequency of the piezoelectric elements as well as the

amplitude of the sensor signal.

White et al. (2007) presented experimental investigations on representative carbon-

epoxy composite scarf and over-ply joints. Piezoelectric elements were used to excite

and measure the response of the repaired structure. The frequency response signature

of the repaired structure with simulated debondings was found to differ significantly

from that one with undamaged repair, considering two sets of boundary conditions.

Soejima et al. (2008) developed a novel damage monitoring system, which can monitor

the integrity of composite structures in aircrafts. In that system, FBG sensors were used

as sensors, and piezoelectric transducers (PZT) were used as the generators of elastic

waves, which propagated in the structure to be inspected. Damages such as debonding

and delamination were introduced in the bonded sections of the skin and stringers by

impact loadings. Zagrai et al. (2008) proposed a structural health monitoring (SHM)

approach based on nonlinear ultrasonic response for rapid diagnostics of structural

connectors and joints. Experimental studies showed variation in the nonlinear response

of the joints due to the applied loadings.

Baker et al. (2009) demonstrated the effectiveness of the strain-based SHM approach

for monitoring the boron-epoxy patch repair of a critical fatigue crack in F-111C wing.

In addition, conventional strain gages were used in the SHM system. White et al.

(2009) described a development of a SHM technique for the identification of debonding

in composite bonded patches based on frequency responses. Two commonly used re-

pair schemes, the external doubler repair and the scarf repair, were investigated by the

authors. Experimental analyses were performed by using the frequency responses of the

repairs with and without defects, considering different boundary conditions. It was veri-

fied that damage could be detected through changes in the frequency responses for

both types of repairs. Quaegebeur et al. (2011) proposed a structural health monitoring

strategy in order to detect debondings in a composite lap-joint. The investigated struc-

ture was a composite carbon-epoxy part bonded to a titanium plate, and artificial

debondings were simulated by inserting Teflon™ tapes of various dimensions within the

joint. Finite element analyses and experimental tests were carried out in order to vali-

date the efficient identification of the damage and to evaluate the accuracy of damage

size estimation. Esmaeel et al. (2011) calculated the Energy Damage Index (EDI) based

on a novel vibration-based damage identification methodology by using the Empirical

Mode Decomposition (EMD), which is used to predict damage due to absence of bolts

in common industrial bolted joints. Finite element model, which use the implicit dy-

namic solver of the commercial software Abaqus™, and experimental tests were evalu-

ated. Results showed that the EDI based on the EMD method is a powerful tool not

only for detecting the damage, but also for estimating the progression of the damage in

bolted joints.

Medeiros et al. (2012) presented a case study about the usage of health monitoring

metrics and techniques for detecting damage by using numerical simulations (Fi-

nite Element Analysis) and experimental data (vibration test) of a cantilever

beam. The approach based on Frequency Response Function (FRF) is used. Also,

Medeiros et al. (2013) presented an investigation about the damage effects on the

structural response, considering filament winding composite tubes damaged by

impact loading. The computational analyses were carried out by using an impulse load,
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which excited the structure, and a piezoelectric transducer, which measured the output

data. The results showed that the application of vibration-based methods for detecting

damage is feasible. Borges (2012) investigated experimentally and numerically via the

vibration-based method the changes in a metal-composite bonded joint by using piezo-

electric patch and accelerometers in order to monitor the damage in the joint. That

damage, artificial debonding, was simulated by inserting Teflon™ tapes within the joint.

As observed at the literature discussed earlier, it is possible to verify many works

about structural health monitoring in bonded joints, but it is not common to find sci-

entific contributions, which study metal-composite bonded joints. Moreover, consider-

ing these specific contributions, it is very rarely to have works about structural health

monitoring of Carbon Fiber Reinforced Polymer (CFRP) parts bonded to a titanium

plate with or not damage by using vibration-based method, as well as, by piezoelectric

transducer and accelerometers to measure the frequency response function. The design

of a SHM system involves the integration, acquisition, analysis, visualization and inter-

pretation of data. The data acquisition system should eliminate aliasing and

characterize the signal of interest, while minimizing the amount of data processing. In

fact, the study of data features required to distinguish the damaged structures from un-

damaged ones has received considerable attention in the technical literature. Any SHM

monitoring system will produce an enormous amount of data from which it will be ne-

cessary to select the appropriate information. An innovative analysis of measured data

and accurate interpretation of extracted features are required due to the enormous

amounts of data collected during monitoring exercise, which can provide an effective

diagnostic and/or prognostic of the structure. Thus, a successful SHM system involves

selection and placement of sensors suitable for measurement of key parameters, which

influence the performance and the integrity of the structure. Therefore, this work con-

sists on investigating experimentally through the vibration-based method, the dynamic

behavior changes in a bonded metal-composite structure by using piezoelectric trans-

ducer and accelerometers in order to monitoring a damage. In this work, the damage is

an artificial debonding in the joint, which was simulated by inserting Teflon™ tapes

within the joint. In-situ inspection was ensured by accelerometer and piezoelectric

transducers (PZT) bonded to the structure. Indeed, analyzing of FRFs (frequency re-

sponse functions) and/or mode shapes, obtained via the traditional Fourier Transform

(FT), it was possible to detect failure. Thus, the experimental results obtained from the

accelerometers were compared to the experimental results provided by the smart com-

posite sensors (PZT). Finally, it was discussed the advantages and limitations of the

experimental analyses and the identification technique, which depends on the

vibration-based methods.
Methods: specimens manufacturing and experimental analyses
In the present study, single lap metal-composite bonded joints of titanium and CFRP

parts were manufactured by using an epoxy adhesive film. The CFRP plate is made of 7

plies stacked in [0/90°]7 layup configuration. This material is specified by Hexcel™ as

M20/G0904/47 (epoxy and carbon fiber bidirectional), which is an epoxy resin M20 re-

inforced by bidirectional textile carbon fiber G0904. After the cure process recom-

mended by Hexcel™, the CFRP plate has 47% fiber volumetric fraction. In fact, the



Medeiros et al. Applied Adhesion Science 2014, 2:13 Page 5 of 17
http://www.appliedadhesionscience.com/content/2/1/13
composite parts are obtained from a composite plate following the specifications pro-

vided by Military Handbook (2002) and by Hexcel™, using a vacuum bag method and

hand layup lamination process. This manufacturing procedure was selected, because it

is the most widespread and it is used in aeronautic repair situations, involving such ma-

terials. It is important to mention that the vacuum bag technique ensures versatility

and operational facility, which can be performed under controlled environment (e.g. la-

boratories) or even in field (for instance, a repair installed in the aircraft component).

In addition, thermal blankets have been used to promote the heating of the composite

material during the curing process (c.f., Table 1). Subsequent to this process, the com-

posite plate was cut into six specimens with 390 mm of length, 25.5 mm of width and

1.7 mm of thickness. It is noteworthy that the use of seven layers is due to the fact that

many different structures with thicknesses ranging from 1.5 to 2.0 mm were normally

found in the aircraft maintenance area.

The metallic part was made of a titanium alpha-beta alloy Ti6Al4V (AMS4911). This

material has excellent mechanical properties as well as impact resistance. Thus, in

order to cut the titanium parts from the plates, it was used a guillotine-type knife paral-

lel. Then, it was made up milling the edges for better finishing and assembly of the final

set. The titanium part geometries consist on 390 mm of length, of 25.9 mm of width

and 1.6 mm of thickness.

The adhesive is a film EA934NA epoxy made from Henkel™. However, Hysol

EA934NA is a bi-component thixotropic paste adhesive, which cures at room

temperature and possesses better strength values when the cure process occurs at 300°

F (149°C). The thixotropic nature and good compressive strength values are very im-

portant for potting, filling and fairing, as well as for shim applications. Hysol EA934NA

is qualified as MMM-A-132 Type 1, Class 3 for room temperature cure. It is important

to highlight that the damage is an artificial debonding in the joint, which was simulated

by inserting Teflon™ tapes within the joint.

In order to carry out the vibration tests of the metal-composite bonded structures, it

was used an accelerometer and a piezoelectric transducer (smart composite). By one

side, the PCB Piezotronix accelerometer (part number 333B30) has the following speci-

fications: modal array, ceramic shear ICP, sensitivity 100 mV/g, measurement range

from 0.5 to 3 k Hz. By other side, the smart transducer is made of Lead-Zirkonate-

Titanate (PZT) ceramic type Midé QP10n. In fact, the piezoelectric transducer consists

of a piezoelectric layer made of PZT ceramic and epoxy matrix, which is covered with

thin electrodes on the top and bottom side. More details about this transducer can be

found at Medeiros (2012).
Table 1 Cure cycle for the specimen (ASTM D3039/D3039M)

Parameters Values

Vacuum (in. Hg) 23

Heat up (°C/min.) 3

Cure temperature (°C) 120

Time dwell (min.) 90

Cool down (°C/min.) −3

Final cure temperature (°C) 50
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Piezoelectric ceramic is capable of providing a very precise signal of voltage due to

very small amounts of strain, which is required for sensor application. The same effect

is true in reverse, i.e. a signal of strain is provided by the transducer due to the voltage

applied. Hence, a controlled input signal can produce an efficient response in the ma-

terial, when the device is used as an actuator. In this work, the PZT transducer was

used only as a sensor, not as an actuator. The piezoelectric transducer was bonded in

the titanium surface by using a vacuum bag for compacting and removing volatile

during the cure process of the adhesive, which was performed at room temperature.

Figure 1 shows the entities used during the experimental tests and important specifi-

cations of dimensions.

Four experimental models were studied in order to represent different scenarios,

which the joint can be subjected in operation (in service – Figure 2). The first model

(Model 1) represents the intact joint, i.e. without damage. It should be used as refe-

rence for comparison with other cases. Therefore, the dynamic responses for the un-

damaged structure were treated as the dynamic signatures of the joint. The second

model (Model 2) contains a damage area in the joint, which corresponds to 50% of

debonding. As commented earlier, these two first models were monitored by accele-

rometers in order to identify the damage influence on the dynamic behavior of the

joint. After that, the third and fourth models (Model 3 and Model 4) were similar to

the first e second ones, respectively. However, these models were monitored by PZT

transducer attached to the metallic plate (c.f., Figure 2). Thus, the models can evaluate

the monitoring capacity of the metal-composite bonded joint, undamaged and da-

maged, by accelerometer and piezoelectric transducers. As commented previously, in

order to simulate the debonding, a constant non-adhering film (Teflon™ film) is placed

between the adherents (metallic and composite parts) during the curing process of

the metal-composite bonded joint.

The experimental analyses consist of verifying dynamically the response of the metal-

composite bonded joints. The data acquisition set-up used in the tests was controlled

by a PHO 200 LDS (signal acquisition Photon II), which is a plug and play, multifunc-

tion analog, digital and timing I/O board for USB bus computers (Figure 3). The input

signals were generated by using an impact force hammer (PCB Piezotronix part num-

ber: 0860 – Figure 3). This type of input can excite over a wide range of frequencies.

This is important, because different damages can affect different frequency ranges of a
Figure 1 Experimental model: (a) single lap metal-composite bonded joint with accelerometer and
piezoelectric transducer attached to the titanium part and (b) important dimensions.
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structure, and the resonant and antiresonant characteristics of a structure are good in-

dicators of damage. In fact, this approach is a more global indicator of damage com-

pared to other methods, which use single frequency tone bursts and wave reflection.

The FRFs can indicate damage, which is inside the structure, whereas they may not be

as sensitive to small damage on the surface as compared to wave propagation methods.
Figure 3 General set-up of the experimental tests.
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Some important aspects need to be considered due to the specimen assembly. For

this reason, all the specimens were assembled together in order to minimize un-

desired effects caused by the clamped devices, for example, pre-stress due to assembly

(Figure 4). However, these effects were not evaluated during the experimental analyses,

because the specimens were fixed together and the axial load created by the

clamped device was kept as low as possible in order to avoid changes in the dy-

namic behavior of the specimens (c.f., Figure 4). However, it was not considered the

vibration effects from one specimen to others and vice-versa.

Based on the experimental set-up shown by the Figure 4, it was investigated the

vibration-based damage identification for metal-composite bonded joints. It is impor-

tant to notice that the fundamental idea for this method consists on the principle that

the damage changes the physical properties (damping and stiffness) of the structures.

Hence, these changes cause modifications in modal properties (natural frequencies,

modal damping and mode shapes). For instance, it is possible to observe reductions in

stiffness due to cracks. Therefore, damage can be identified by analyzing the changes in

vibration behavior of the structure. Hence, the knowledge of the vibrational behavior of

a structure can be used to determine the existence as well as the location and extension

of damage.

As well known, dynamic responses can be expressed in the time or frequency do-

main. For linear systems, there is a little loss of information when the data are con-

verted from the time domain to the frequency domain. In this work, the FRFs were

obtained from the ratio between the FFT (Fast Fourier Transform) of the response

(output) and the FFT of the excitation (input). Thus, an impulse force signal was used

to excite the structure (input) and the output was measure by using PZT transducer

and accelerometers. In each case, excitation signals from an impact hammer were ap-

plied as perpendicular loading on the titanium part, and the output signals were ob-

tained from the positions, where accelerometers (H12 and H13) and PZT sensor (H14)

were attached (c.f., Figure 2). Each time signal gathered consisted of 8192 points and
Figure 4 Assembly and position of the specimens.
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they were sampled until 1000 Hz. The number of averaging individual time records

was selected to be five in order to reduce the random fluctuation in the estimation of

the FRFs. After the data acquisition, they were saved in a file to be analyzed by using a

signal processing software (Dynamic Signal Analyzer – Photon II). Finally, in order to

identify the debonding damage, the FRFs for undamaged and damaged joints were

compared.
Results and discussion
First of all, the peaks of the measured FRFs contain significant information of the

metal-composite bonded joints, such as natural frequencies, damping and, it may be

possible to identify damage. In order to evaluate the potentialities and limitations of

SHM system, which uses vibration-based damage identification, three case studies were

investigated by using the experimental models shown previously. In the first case study

(Case Study 1), it was not only investigated the vibration feature of the metal-

composite bonded joint, but also the influence of the PZT transducer in the dynamic

structural response. Hence, in this study, it was used the Model 1 and the Model 3. In

the second case study (Case Study 2), it was evaluated the damage model by using ac-

celerometer (without PZT transducer). Thus, it was used the Model 1 and the Model 2.

Finally, the third case study (Case Study 3) consists of evaluating the damage model by

using PZT transducer. Therefore, it was analyzed the Model 3 and the Model 4. It is

worth to mention that once the frequency increases with the presence of PZT trans-

ducer, the FRF response becomes more dependent on the structure in the neighbor-

hood of the sensors.
Case study 1 – influence of PZT transducer

The experimental Model 1 (intact without PZT sensor) was carried out in order to use

as a reference for the development of the vibration characteristic for the metal-

composite bonded joint. The experimental Model 3 (intact with PZT sensor) was per-

formed in order to verify the influence of the piezoelectric sensor in the dynamic struc-

tural response. Thus, there is a comparison between the experimental FRFs, measured

by accelerometers, for the both end clamped joints with and without piezoelectric

transducer (c.f., Figure 5 and Figure 6). Based on the dynamic responses, it is noted

primarily the changes of natural frequencies. These changes are due to not only the

increase of mass, but also by the changes in the stiffness with the presence of the

PZT sensor.

Regarding the signal measured by accelerometer, it is important to observe that the

FRF curves are much clearer below 500 Hz. Thus, it may be difficult to observe changes

in the FRFs due to debonding, considering frequency ranges higher than 500 Hz. An-

other important aspect to be observed regarding the accelerometer signal was a slight

difference in the signal from the accelerometer (H13) with and without the PZT trans-

ducer, especially between 200 Hz and 350 Hz (c.f., Figure 6).

The Table 2 clearly demonstrated the differences between the data obtained from the

experimental analyses for the Model 1 and Model 3. The largest difference is for the

2nd mode obtained by H12 and for the 4th mode by H13, which is less than 4%. This dif-

ference can be explained by the accelerometers positions.



Figure 5 With vs. without piezoelectric transducer FRFs for H12, Model 1 and Model 3 – Case Study 1.
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Case study 2 – damage identification without PZT transducer

The case study 2 consists of analyzing metal-composite single lap joint specimen, with

and without damage, by using accelerometers. The FRFs for the intact and damaged

joint are shown in Figure 7 and Figure 8. Regarding the damage in the experimental

Model 2, it is shown that it lost structural stiffness due to the debonding failure. As

commented earlier, the experimental tests were carried out by using the same set-up

for both models, i.e. it was used the same assembly. Thus, the changes observed in the

FRFs could not be created by the differences in assembly procedures.

The Table 3 demonstrated the differences between the data obtained from the experi-

mental analyses for the Model 1 and Model 2. The largest difference is for the 5th mode

obtained by H12 and for the 3rd mode by H13, which is less than 7%. This difference

can be explained by the accelerometers positions and the modal shape of the structure.
Figure 6 With vs. without piezoelectric transducer FRFs for H13, Model 1 and Model 3 – Case Study 1.



Table 2 Resonance frequencies obtained by experimental tests for Model 1 and Model 3

Mode ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz] ω6 [Hz]

Model 1 H12 33.44 81.25 135.9 208.1 313.4 416.9

H13 33.75 79.69 125.9 205.0 292.2 412.5

Model 3 H12 33.13 84.38 139.1 211.9 318.1 423.1

H13 33.13 81.88 124.1 212.5 296.3 418.8

Δ(*): H12 0.93% 3.85% 2.35% 1.83% 1.50% 1.49%

Δ(*): H13 1.84% 2.75% 1.43% 3.66% 1.40% 1.53%

*Δ = |H(M1) – H(M3)| / H(M1).
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Case study 3 – damage identification with PZT transducer

The case study 3 was carried out in order to evaluate the applicability of the vibration-

based monitoring technique by using PZT sensors. For both measured procedures

(accelerometer and PZT), it is evident that the damage investigated in this study

produces modifications in the FRFs. These changes are shown by the lower frequen-

cies, but they are more pronounced at higher ones (above 500 Hz). However, as

commented before, the signal response is not so clear for these frequency ranges. In

fact, there is a frequency reduction, which can be explained by classical structural

dynamics. This behavior was expected, because the joint loses ability to transfer

loading with the debonding area in the joint. Comparing the FRFs by using a PZT

transducer and the accelerometers, it was verified that the damaged model has lower

stiffness than undamaged one (c.f., Figures 9, 10 and 11).

Furthermore, the signals obtained by both the accelerometer and the piezoelectric

transducer exhibit good consistency, although there are low differences between the

signal from the accelerometer and the PZT transducer (as shown in the Table 4). In

addition, the resonance peaks of the PZT are above the peaks presented by accele-

rometers. This indicates that the PZT transducer also influence on the damping of

the joint.
Figure 7 Intact vs. damaged FRFs for H12, Model 1 and Model 2 – Case Study 2.



Figure 8 Intact vs. damaged FRFs for H13, Model 1 and Model 2 – Case Study 2.
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As observed from the FRFs, it is possible to identify the damage in the metal-

composite bonded joint but, sometimes, depends on the size and location of the da-

mage, as well as the interest frequency range, it is very complicated to do this task. By

other side, the FRF is desirable from the viewpoint of applications for SHM systems,

because structural FRFs are sensitive to small changes and damage in a structure. To

quantify this sensitivity, damage indicators have been developed to calculate the diffe-

rence in the FRF responses between intact (undamaged) and damaged structures.

One very important damage indicator for the structure was developed by Mickens

et al. (2003). This damage indicator considers the percent difference between the mag-

nitude of the FRFs of the undamaged and damaged structures. As it is known, any

physical quantity can be used to compute the FRF, such as acceleration/force, velocity/

force, displacement/force, strain/force or PZT (piezoelectric) sensor voltage/PZT exci-

tation voltage. Thus, the damage indicator D can be obtained by computing the mean

value of y(f ) for the frequency range of interest.

y fð Þ ¼ abs
Hi
�� ��− Hd

�� ��
Hi
�� ��

 !
; ð1Þ
Table 3 Resonance frequencies obtained by experimental tests for Model 1 and Model 2

Mode ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz] ω6 [Hz]

Model 1 H12 33.44 81.25 135.9 208.1 313.4 416.9

H13 33.75 79.69 125.9 205.0 292.2 412.5

Model 2 H12 33.13 83.44 131.3 209.4 295.6 418.4

H13 33.13 80.94 117.2 214.4 275.6 418.8

Δ(*): H12 0.93% 2.70% 3.38% 0.62% 5.68% 0.36%

Δ(*): H13 1.84% 1.57% 6.91% 4.59% 5.68% 1.53%

*Δ = |H(M1) – H(M2)| / H(M1).



Figure 9 Intact vs. damaged FRFs for H12, Model 3 and Model 4 – Case Study 3.
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D ¼ Δf
f 2−f 1

Xn
i

yi fð Þ; ð2Þ

where the superscripts i and d denote the intact and damage structures, respectively,

and the vertical bars represent the magnitude of the function. Also, f1 is the lower fre-

quency and f2 is the upper frequency of the range of interest and Δf is the frequency in-

crement between measurement points. In addition, the equation (2) provides a damage

indicator, which gives a normalized measurement of damage in the structure. These

values once collected for different sensor/actuator pairs can roughly quantify the

amount of damage in a structure. The D expression returns values greater than zero if

any variation in the structural dynamic behavior occurs, and D will return “zero”, if

there is not any damage in the structure.
Figure 10 Intact vs. damaged FRFs for H13, Model 3 and Model 4 – Case Study 3.



Figure 11 Intact vs. damaged FRFs for H14, Model 3 and Model 4 – Case Study 3.
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Other important metric was proposed by Monaco et al. (2000) and uses the changes

in measured FRFs in order to determine the Damage Index (DI). This metric is based

on the acquisition and comparison of FRFs from the monitored structure before and

after damage occurrence. As commented previously, structural damages modify the dy-

namic behavior of the structure and, consequently, its FRFs. This makes possible the
Table 4 Resonance frequencies obtained by experimental tests for Model 3 and Model 4

Mode ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz] ω6 [Hz]

Model 3 H12 33.13 84.38 139.1 211.9 318.1 423.1

H13 33.13 81.88 124.1 212.5 296.3 418.8

H14 33.75 86.88 142.5 222.8 321.9 426.3

Model 4 H12 36.88 90.31 140.6 216.9 310.3 426.3

H13 36.88 88.13 126.9 219.1 286.6 427.2

H14 36.88 94.69 147.8 229.1 312.8 434.1

Δ(*): H12 11.32% 7.03% 1.08% 2.36% 2.45% 0.76%

Δ(*): H13 11.32% 7.63% 2.26% 3.11% 3.27% 2.01%

Δ(*): H14 9.27% 8.99% 3.72% 2.83% 2.83% 1.83%

*Δ = |H(M3) – H(M4)| / H(M3).
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calculation of a representative DI. In this approach, the calculated DIs are the averages

of the differences between intact and damaged structures. In this work, two DI expres-

sions have been considered:

DI1 ¼

Xn
j¼1

FIi−FDij j

Xn
j¼1

FIij j
; ð3Þ

DI2 ¼
Xn
j¼1

Xn
j¼1

FIi−FDij j
Xn
j¼1

FIij j

0
BBBB@

1
CCCCA

n
; ð4Þ

where FIi and FDi are respectively the n values of the intact and damaged structures

FRFs, and n depends on the chosen sampling frequency and frequency bandwidth of

acquisition. Both DI expressions return values greater than zero, if any variation in the

structural dynamic behavior occurs, and they will return “zero”, if there is no damage

in the structure.

Another important approach was presented by Prada et al. (2012) and it was defined

as Change in Measured Parameters Metric (CMPM). This metric uses previously nu-

merical or experimental modal characteristics of the undamaged structure. After that,

it uses the parameters provided by a sensor in the damaged structure. In addition, it

has the advantage of being simple to be implemented and only one sensor may be used

in the structure.

CMPM ¼
φ

FUD

� �
φ
FDj

� �
sensor

; ð5Þ

where φ are the resonance frequencies for damage or intact structure. FUD and FDj are

the amplitudes for the intact (undamaged) and damaged structure, respectively by the j

sensors. This damage index return values close to “one”, if there is not any variation in

the structural dynamic behavior.

The damage values for these analyses are given in Table 5 and Table 6. These values

were obtained by a piezoelectric (H14) and a point, which corresponds to the position

of the accelerometer (H12 and H13). It is important to notice that Hi,j indicates the

point, which is loaded (i), and the point, which is the sensor (j), as given by Figure 2. It
Table 5 Damage indicators D and DI for the structure

Damage indicator Intact Position

H12 H13 H14

D 0.0 0.1819 0.4949 0.1492

DI1 0.0 0.7731 0.6112 0.5509

DI2 0.0 263.9329 97.0329 79.5999



Table 6 Damage indicator CMPM for the structure

Position Intact Damaged

ω1 ω2 ω3 ω4 ω5 ω6

H12 1.0 1.288 0.951 0.865 1.181 0.330 0.615

H13 1.0 1.134 0.849 0.803 1.425 0.678 0.551

H14 1.0 0.467 0.326 0.846 0.509 0.149 0.520
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was observed that the damage indicator values for H12, H13 and H14 were different and

the highest value was obtained for the accelerometer attached to the composite part.

This difference can be explained due to the relation between the sensors and the loa-

ding position. As close this distance, as less the interference in the data acquisition.

The seemingly large value of damage indicators occurs, because the damage indicator

involves division of FRFs. When damage occurs in the structures with small damping,

it is possible to observe that there are misalignments between the FRFs for the intact

and damaged structures. Thus, due to many peaks and valleys in the FRFs, small

misalignments in the natural frequencies can cause large changes in the calculation

of damage indicators functions as shown by the Tables 5 and 6.
Conclusions
A damage identification experimental study was shown for single lap metal-composite

bonded joint made of titanium and epoxy resin reinforced by carbon fiber. The damage

was simulated by using an artificial debonding in the joint, inserting Teflon™ tapes

within the joint. In fact, vibration tests were performed in intact and damaged bonded

joints in order to identify the damage via piezoelectric transducer and accelerometers.

The experimental results demonstrated the usefulness of vibration-based method by using

accelerometers and piezoelectric transducers (as sensors) in order to detect debonding dam-

age. This method has the advantage to be easily implemented. Also, it can provide the global

behavior of the structure as well as local information in real time (e.g. in flight conditions),

considering the usage of PZT sensors. Besides, it is very important to highlight that this

method do not require direct human accessibility to the structure, and this is very strategic

mainly for bonded joints. On the other hand, there are some limitations. Since the method

is a difference between the data of the intact and damaged structure, if the data acquisition

possesses noise, it is very complicated to identify the damage. This occurs because the com-

parison between FRFs from intact and damaged can be contaminated mainly in the lower

frequencies. Therefore, it is concluded that the identification of the damage cannot be based

only on the difference of natural frequencies for intact and damaged structure. Thus, a

damage indicator is strongly recommended.

It was shown that the damage metric developed by Mickens et al. (2003) is a good option

not only to identify the damage, but also to provide a prediction of the damage severity. How-

ever, even using damage metrics, SHM systems based on vibration methods provide little in-

formation about the location and extension of the damage, unless large quantities of sensors

are employed. And, this will probably increase the cost and the weight of the component.

Finally, regarding the potentialities and limitations shown above, it is possible to con-

clude that there is a great future perspective for the application of vibration-based

methods by using PZT sensors on SHM systems for metal-composite bonded structures.
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