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Abstract

The aim of this study was to characterize the degree of conversion and the bond
strength of experimental adhesive systems formulated with elastomeric monomers
(Exothanes). Two-step self-etch adhesive systems were formulated, where the primer was
constituted by HEMA, HEMA-P, water and ethanol, and the resin bonds were prepared
mixing one type of Exothane (8, 9, 10, 24, or 32) (75 wt%) with TEGDMA (25 wt%). CQ,
EDAB, and DPI were added as photo-initiation system. UDMA was used as control, so six
different resin bonds were formulated at all. The adhesive system Clearfil SE Bond (CLSE)
was used as a commercial control. The degree of conversion (DC) of each resin bond
was evaluated in infrared spectroscopy (RT-FTIR, Shimadzu Prestige-21) using a diamond
crystal (n = 3). The microshear bond strength (μSBS) test was performed using a universal
testing machine (EMIC DL-500). While the DC data was analyzed by one-way ANOVA and
Tukey (p < 0.05), the μSBS data was analyzed by Kruskal-Wallis test and Student-Newman-
Keuls (p < 0.05). The resin bonds containing the Exothanes 8, 9, and 32 demonstrated DC
values higher than 80%, differently to the other Exothane-based adhesives, which showed
DC values close to 50%. UDMA and CLSE demonstrated lower DC than E8, E9, and E32
(p < 0.001). The Exothane 24 resulted in the lowest DC value of the study (p < 0.001),
although it was similar to the E10 and UDMA adhesives (p > 0.05). Low μSBS results were
seen for the Exothane-based materials. CLSE demonstrated significantly higher bond
strength than the other materials (p < 0.001). UDMA has also presented low μSBS to the
dentin substrate. It can be concluded that the Exothanes evaluated demonstrated
satisfactory degree of conversion, with some of them reaching almost full conversion of
monomers in polymer. However, considering the formulations investigated, they were
not good bonding agents. So, they were not reliable options for composing the
polymeric matrix of dental adhesive materials.

Keywords: Dental adhesives; Exothanes; Elastomeric monomers; Elastomers; Microshear
bond strength; Degree of conversion; Polymerization reaction
Background
Dental adhesive systems are commonly used for bonding the restorative material to the

tooth structure. The bonding mechanism is basically characterized by the substitution of

superficial tooth minerals for resin monomers, which polymerize in situ, creating a

micro-mechanical interlocking between the tooth and the bonding substance. This

process is known as hybridization, where a hybrid layer is formed between the tooth
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substrates and the restorative material [1]. The bonding mechanism starts with the appli-

cation of an acidic substance, which enables the superficial tooth demineralization; then,

another substance is used to prepare the demineralized substrate (primer), followed by the

application of a resinous substance (resin bond), which links the tooth to the restorative

material. Depending on the mode of using or combining these adhesive substances (acid,

primer, and resin bond), different adhesive systems are present in the dentistry field.

The adhesive systems are polymer-based materials, and they are commonly constituted

by methacrylate monomers, solvents, and a photo-initiation system, which makes them

photo-curable [2]. The monomeric nature plays important roles for each bonding step,

where the primer should be a polar substance (hydrophilic) as the tooth is a humid sub-

strate, and the resin bond should be a more non-polar substance (hydrophobic) than the

former as this characteristic increases its mechanical strength and reduces the polymer

network degradation (hydrolysis). This dual characteristic (polarity and nonpolarity) are

very important for acquiring high adhesion between the tooth and the restorative material.

Even so, there are several in vitro studies which evaluated the bond strength stability be-

tween tooth substrates (enamel or dentin) and restorative materials and most of them

have concluded that the adhesive interface degrades over time [2-5], mainly because of

the monomers used in their composition. This fact may influence negatively with the per-

formance of the restorative procedure. Consequently, materials showing higher strength

and stability to wet environment are still needed in dentistry.

Recently, new types of monomers were brought up to the chemistry industry. The

Exothane™ Elastomers are categorized as the most recent advance in Esstech’s urethane

chemistry [6], which could be used for a broad range of demanding formulations, includ-

ing the adhesive ones. They present different physical characteristics when compared to

the urethane dimethacrylate (UDMA), which is a common monomer found in dental ma-

terials composition [7,8], such as higher elongation and toughness properties. Moreover,

these monomers have the potential of acquiring high conversion values, which is ex-

tremely desirable in adhesive materials, improving physical properties and maybe leading

to low leachable activity as lower amount of residual monomers would be present at the

hybrid layer, and as a consequence lower cytotoxicity [9]. In addition, considering that the

Exothanes present elastomeric characteristics, they may imply mobility and capability to

relax the polymer network, which is important for relieving the shrinkage stress

phenomenon [10]. Nevertheless, there are several types of Exothanes and no existing stud-

ies investigating them.

Thus, the aim of the present study is to characterize the degree of conversion and the

bond strength of experimental adhesive systems formulated with elastomeric mono-

mers (Exothanes). The null hypothesis evaluated was that the experimental materials

would not differ to the performance of a broadly used commercial adhesive system.
Methods
Formulation of the experimental adhesive systems

Two-step self-etch adhesive systems were prepared in the present study. The experimental

self-etching primer was formulated by mixing the components described in Table 1, which

was the unique primer used in the study. Methacryloyloxyethyl dihydrogen phosphate

plus bis(methacryloyloxyethyl) hydrogen phosphate (HEMA-P) was synthesized as



Table 1 Experimental materials formulated in the study: a universal self-etch primer and
different resin bonds

SELF-ETCH PRIMER Components percentage (wt%)

HEMA-P Distilled water Ethanol HEMA

Puniversal 30 20 20 30

RESIN BONDS Components percentage (wt%)

Variation monomer (75wt%) TEGDMA CQ + EDAB + DPI

E8 Exothane 8 25 0.5/1/1

E9 Exothane 9 25 0.5/1/1

E10 Exothane 10 25 0.5/1/1

E24 Exothane 24 25 0.5/1/1

E32 Exothane 32 25 0.5/1/1

UDMA UDMA 25 0.5/1/1

HEMA-P, Methacryloyloxyethyl dihydrogen phosphate plus bis(methacryloyloxyethyl) hydrogen phosphate; HEMA,
hydroxyethyl methacrylate; TEGDMA, triethyleneglycol dimethacrylate; CQ, camphorquinone; EDAB,
ethyl-4-dimethylaminobenzoate; DPI, diphenyliodonium hexafluorphosphate; UDMA, urethane dimethacrylate.
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previously described [11]. It was mixed with distilled water, 2-hydroxyethyl methacrylate

(HEMA) and ethanol. On the other hand, the resin bonds were formulated using the

Exothane monomers, which were Exothane 8 (E8), Exothane 9 (E9), Exothane 10 (E10),

Exothane 24 (E24), and Exothane 32 (E32). They were all purchased from Esstech (Esstech

Inc, Essington, PA, USA) and used without further processing. UDMA was used as con-

trol (Table 1). Also, the two-step self-etch adhesive system Clearfil SE Bond (Kuraray,

Tokyo, Japan) was used as the commercial control. For the experimental resin bonds for-

mulation, each resin matrix was constituted by one type of the Exothanes (75 wt%) and 25

wt% of triethyleneglycol dimethacrylate (TEGDMA); 0.5 wt% of camphorquinone (CQ), 1

wt% of ethyl-4-dimethylaminobenzoate (EDAB), and 1 wt% of diphenyliodonium hexa-

fluorphosphate (DPIHFP) were added as photo-initiators (Table 1). All the primers and

the resin bonds were ultrasonicated for 15 minutes.
Degree of conversion analysis

The degree of conversion (DC) of each resin bond was evaluated in triplicate using Fourier

Transform mid-infrared spectroscopy (Prestige21, Shimadzu, Tokyo, Japan). A standard

adhesive drop (3 μL) was dispensed over a diamond crystal (Smiths) where a preliminary

reading (monomer) for the unpolymerized material was taken. Then, the composite was

light-activated with a light-emitting diode unit (LED Radii, SDI, Bayswater, Australia) for

30 seconds (s) and another reading was carried out (polymer). The DC was calculated as

previously described [12].

Microshear bond strength (μSBS) evaluation and Failure analysis

The μSBS test was conducted according to a previous study [13]. Twenty-eight freshly bo-

vine incisors were obtained, cleaned, and stored in 0.5% chloramine T for seven days. Then,

they were transferred to distilled water and kept frozen until their use. Each tooth was em-

bedded in acrylic resin, followed by the grounding of its vestibular surface in wet 600-grit

silicon carbide paper to expose the dentin substrate. After that, the experimental adhesive

systems were actively applied: one coat of the universal self-etch primer (Puniversal) for 20 s

and gently air-dried for 10 s; and one coat of the experimental resin bonds, which were
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applied for 10 s. Clearfil SE Bond (Kuraray, Tokyo, Japan) was applied as the manufacturer

instructions. To delimitate the bond testing area, a circular silicon matrix (array) with three

orifices of 1.5 mm in diameter was positioned over the dentin surface, and the light-

activation for 20 s was performed on each orifice with the same light-curing unit previously

described. Then, an increment of composite resin (Filtek Z-250, 3M ESPE, St. Paul, USA)

was inserted into the orifices and light-activated for 40 s. Then, the matrix was gently re-

moved, resulting in specimens with three cylindrical restorations at the dentin surface,

which were stored in distilled water at 37°C. After 24 hours, the specimens were positioned

in a universal testing machine (DL-500, EMIC, São José dos Pinhais, Brazil), where a thin

wire was looped around the composite cylinder restoration. The specimens were submitted

to microshear bond strength μSBS) test at a crosshead speed of 1 mm/min and the results

were expressed in MPa. After the test execution, the dentin surfaces were examined with a

stereomicroscope at a magnification of 40x in an attempt of determining the failure pattern,

which was classified as adhesive (on the adhesive interface), cohesive in dentin, cohesive in

adhesive resin, or mixed.

Statistical analysis

Data of the degree of conversion were submitted to one-way Analysis of Variance and

the Tukey test at the 0.05 level of significance as a post hoc test. The microshear bond

strength data were submitted to Kruskal-Wallis and Student-Newman-Keuls test as a

post hoc test at the 0.05 level of significance.

Results
The degree of conversion (DC) obtained with each experimental resin bond formulated

and the commercial control is shown in Figure 1. The resin bonds containing the
Figure 1 Degree of conversion of the resin bonds evaluated. Different letters indicate statistically
significant differences (p < 0.05).
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Exothanes 8, 9, and 32 demonstrated DC values higher than 90%, showing higher DC

than the control groups and the other resin bonds (E10 and E24) (p < 0.001). The resin

bonds containing the Exothanes 10 and 24 presented DC values near to 50%, which

were similar to the experimental control group (59%) (p = 0.769 and p = 0.257, respect-

ively). The commercial control group showed a DC value of 63.8%, which was similar

to the E10 (p = 0.247), but significantly different to the E24 (p = 0.048).

The microshear bond strength (μSBS) results are presented in Figure 2. All the experi-

mental materials (Exothane-based and UDMA-based adhesive systems) resulted in low

μSBS values. In contrast, the commercial CLSE adhesive resulted in 35.6 MPa of bond

strength, which was the highest μSBS median value of the study. CLSE showed higher

bond strength than UDMA and the other adhesives (p < 0.05). UDMA was as strong as

the E24 adhesive system (p > 0.05), which demonstrated higher μSBS values than the other

Exothane-based adhesives (p < 0.05). With regard to the failure pattern distribution, the

Exothane-based and UDMA-based adhesive systems generated only adhesive failure

modes, differently to the control CLSE, which demonstrated equilibrium of adhesive

(45%) and cohesive/mixed (55%) failures (see in Figure 2, image and legends).
Discussion
The aim of this study was to investigate about the reliability of using the Exothane mono-

mers as polymeric matrix of dental adhesive materials. So, experimental adhesive systems

containing these monomers were prepared. It is already known that a satisfactory per-

formance of polymeric dental materials is directly correlated to a proper polymerization

reaction of monomers in polymer [7,12,14]. Interestingly, within the degree of conversion

results obtained from each resin bond formulated it is possible to verify that some
Figure 2 Microshear bond strength to dentin of the adhesive systems evaluated. Different letters
indicate statistically significant differences (p < 0.05). Regarding the failure pattern of the adhesive systems,
all the experimental materials showed adhesive failures (*); in contrast, CLSE demonstrated only 45% of
adhesive failures, and 55% of cohesive/mixed failures.
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Exothanes acquired excellent conversion values (Figure 1). In fact, adhesives containing

the Exothanes 8, 9, and 32 showed almost full polymerization, and according to Ferracane

(2006) [7] how greater the degree of conversion, higher the material’s stability to the hy-

drolysis degradation phenomena. This will probably generate a long-durable material with

improved physic-mechanical properties [15]. Nevertheless, not by all the experimental

Exothane-based resin bonds resulted in excellent conversion values, as the Exothanes 10

and 24 showed degree of conversion near to 50% (Figure 1).

The conversion of monomers into a polymer network is influenced by intrinsic factors,

such as the monomer’s degree of functionality (number of double bond terminations per

molecule) [16], chain extender length [17], viscosity [18], and reactivity [19]. According to

the Esstech site, no data of molecular formula or weight are supplied for the Exothanes 8,

10, 24, and 32. Consequently, their degree of functionality, chain extender length, and re-

activity are unknown by the scientific community. In contrast, the Exothane 9, which is

not new in the chemistry field, has been already commercialized with another product

name (PEG 400 Extended Urethane Dimethacrylate, Item # X-726-0000 from the Esstech

catalog) [6]. It presents a functionality 2 and a high molecular weight (1139.4 g/mol), but

a low viscosity (1.855 PaS), fact that has probably contributed to its high degree of conver-

sion (Figure 1), as low viscosities facilitate the molecule mobility, increasing its conversion

[18]. Unfortunately, the absence of knowledge about the molecular structure and weight

of the other Exothanes limits the discussion and understanding of why they react so differ-

ently, leading to polymers with almost full conversion (those containing the Exothanes 8

and 32) and others with only half-conversion values (those containing the Exothanes 10

and 24) (Figure 1).

When the Exothane-based resin bonds are compared to the control materials, it can be

observed that the presence of the Exothanes 8, 9, and 32 has improved the degree of con-

version, differently to the other two Exothanes (10 and 24), which contributed to convert

similarly to the UDMA-based resin bond. Considering this result, it can be inferred that

these latter Exothanes present a similar molecular structure of UDMA, as they are also

urethane-based monomers. With regard to the degree of conversion obtained with the

CLSE resin bond, it is in accordance with previous studies [20,21]. In addition, the 64% of

monomeric conversion achieved with this adhesive was similar to the UDMA and E10
groups (Figure 1), but different to the E24 resin bond, which showed a statistically lower

degree of conversion, probably because the Exothane 24 monomer may present low mo-

bility ability, limiting the polymerization reaction [17].

With regard to the bond strength results, it is possible to verify that the Exothanes

are not good options for the development of dental adhesive systems, at least using the

formulations evaluated in this study. When only the degree of conversion results are

observed, it can be expected a satisfactory adhesive capacity for all the Exothanes, as

conversion values higher than 50% are enough for bonding to tooth substrates [22].

However, the bond strength results obtained in this study showed low adhesive ability

for all the Exothane-based adhesive systems (Figure 2).

The adhesion process of the tooth substrates is a complex mechanism which involves

the demineralization of the surface, micro-porosities formation, resin monomers infil-

tration, and a proper polymerization. Several factors may hamper one or more of these

factors, such as the acidic substance concentration used for etching the substrate [23],

the polarity of the adhesive substances applied over the demineralized tooth [24,25],
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the complete or incomplete volatilization of any solvent retained in the adhesive layer

[26], or the light source and intensity used for photo-activate the adhesive [12]. Consid-

ering each of these aforementioned factors, the acidic substance used for the experi-

mental materials formulation was the HEMA-P, which has demonstrated satisfactory

demineralization ability in a previous study; [11] after the primer’s application, the solv-

ent was volatilized by air stream for 10 s, leading to the formation of a shiny layer over

the substrate (a solvent-free pellicle was visually formed); lastly, the light source used

was the same for all the materials evaluated. Nevertheless, the polarity of each resin

blend formulated is unknown, and this fact may have probably caused the different

bond strength results obtained in the study.

The polarity of a monomer is a characteristic that shows its hydrophilicity/hydropho-

bicity ratio [7]. Generally, the primer substance is applied over the dentin substrate,

which is a humid structure that is chemically compatible with hydrophilic molecules;

so, the primer should be hydrophilic, enabling the resin monomers infiltration into the

demineralized dentin, leading to their entanglement with the exposed collagen fibrils

[27]. Nevertheless, hydrophilic substances tend to suffer faster degradation phenomena

due to the hydrolysis processes that occur in the oral environment [7,24]. In contrast,

the resin bond substance, which is applied over the primer, should be a hydrophobic

material, as this characteristic implies strength and more stability for the adhesive to re-

sist the degradation phenomena [28]. Even so, the resin bond should be only moder-

ately hydrophobic, as a poor interaction between the primer and the resin bond may

occur (phase separation). Considering that the same primer formulation was used in

the current study, the Exothane-based adhesives (experimental resin bonds) have prob-

ably an extremely hydrophobic nature, as very low bond strength results were obtained

(Figure 2), whit complete adhesive failure modes. This characteristic shows that a proper

interaction between the primer and the experimental resin bonds have not occurred, in-

cluding for the control UDMA-based resin bond. This result may suggest that the ureth-

ane derivatives investigated in this study are hydrophobic substances, even when they are

mixed with TEGDMA (a more hydrophilic monomer). On the other hand, the control

CLSE showed 55% of cohesive/mixed failure modes, indicating that a strong hybrid layer

was created between the dentin substrate and the adhesive components. This is already

understood because the CLSE is constituted by 10-methacryloyloxydecyl dihydrogen

phosphate (MDP), which enables a chemical and a micro-mechanical bonding mecha-

nisms [2], improving the bond strength results, as confirmed by the present study.

Considering the results obtained in this study, the null hypothesis evaluated that the

experimental adhesive systems would not differ to a broadly used commercial adhesive

system can be partially accepted, as regarding the degree of conversion analysis, some

of the materials (E10 and UDMA) demonstrated similar conversion when compared to

the control Clearfil SE Bond. With regard to the bond strength performance, all the

experimental adhesive systems presented lower bonding ability than the commercial

material used. Therefore, further studies evaluating the ultimate microtensile bond

strength of Exothane-based adhesives are necessary, mainly investigating different for-

mulations. Moreover, sorption and solubility tests are interesting for clarifying the

hydrophilicity or hydrophobicity of the Exothanes, although these monomers should

be full-characterized about their physic-mechanical properties, as very few informa-

tion are available.
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Conclusion
Despite of the limitations of this in vitro study, it can be concluded that the Exothanes

evaluated demonstrated satisfactory degree of conversion, with some of them reaching

almost full conversion of monomers in polymer. However, considering the formulations

investigated, they were not good bonding agents. So, they were not reliable options for

composing the polymeric matrix of dental adhesive materials.
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