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Abstract

In this work Nb-doped TiO2 (TiO2:Nb) films were deposited by reactive sputtering.
The substrate was biased with negative pulses to change the energy of the ions
nearby the sample surface during the deposition. As consequence, the film crystalline
structure and roughness were changed. It was verified that higher energy favours
the rutile growth with a higher roughness, even under low temperature as 300°C,
and the material structure can be controlled by setting the duty cycle, voltage and
frequency of the switched power supply applied to the substrate.
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Background
TiO2 films have been investigated because of their wide variety of technological appli-

cations. For example, the adhesion of the human oral mucosa soft tissue on TiO2

microimplants was evaluated in [1], observing some potential clinical benefits, includ-

ing the possibility of bone resorption. Other examples include the TiO2 use in photo-

voltaics and photocatalysis fields [2-5].

Increasing the implant surface roughness enhances its adhesion to the soft tissue,

but can also increase the infection risk due to the bacterial accommodation in the

space between its valleys and peaks. The photocatalytic property of TiO2 in the anatase

structure to eliminate bacteria was evaluated in [6], identifying its use as an excellent

way for sterilizing the implants surfaces and reduce the infection risk. The incorpor-

ation of Nb into the TiO2 favors the nucleation of grains and electrical conductivity,

producing nanostructured and transparent films [7-10].

Thin film deposition by magnetron sputtering enables the control of different param-

eters that can improve physical-chemical properties, microstructure and film adhesion

on the substrate. The substrate negative bias is a strategy used for increasing the kin-

etic energy of the ions striking the film surface during the deposition [11]. In this work,

the effects of pulsed bias in the microstructure of TiO2:Nb films deposited on stainless

steel substrate were analysed by X-Ray diffraction (XRD) and Atomic Force Micros-

copy (AFM).
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Methods
Deposition chamber

The deposition chamber is a stainless steel vacuum vessel with 30 cm (diameter) by

30 cm (height). The ultimate pressure inside the chamber is 10−5 Torr, done by a vac-

uum system composed of a mechanical pump and a turbo molecular pump. Inside the

chamber there are a magnetron, a grounded grid, a sample holder for 6 samples and an

electric heater (controlled by a PID). The temperature is monitored with a thermo-

couple inserted in the substrate holder and its temperature is maintained at 300°C. The

working pressure is measured by a capacitive gauge Adixen ASD 2004 and the base

pressure is measured with a Penning gauge Edwards CP 25 EK. The gases flowing into

the chamber are controlled by two mass flow meters of 200 sccm.

The base plasma is generated by a direct current power supply (up to 1000 V and 2.0

A). The (Figure 1) shows a schematic drawing of the experimental setup.

The TiO2:Nb films were deposited on stainless steel using a Grid Assisted Magnetron

Sputtering System [12]. The target used was a titanium disc (99.5% purity) with

100 mm in diameter holding 12 inserts of niobium (99.5%) with 3 mm in diameter each

one, disposed in the erosion area, producing Ti/Nb films with ratio of 9:1. The working

gas used in the sputtering process was a mixture of Ar and O2 in order to get a TiO2:

Nb film - experimental details are showed in (Table 1).

The waveform of substrate bias was acquired using an oscilloscope Tektronix TDS

2024B. The (Figure 2) shows an example of the substrate voltage and current signals

during the film deposition. The time “on” divided by the period is called “duty cycle”

(t/T as showed in (Figure 2)). It means the percentage of time, during one period, on

which the substrate is biased. The pulsed power supply is a homemade device specially

developed for this work.

The duty cycle was varied from 30% up to 70%. The peak substrate bias was -100 V.
Figure 1 Schematic of the grid assisted magnetron sputtering system.



Table 1 Summary of the experimental parameters

Variable Value

Deposition time 30 min.

Substrate temperature 300°C

Substrate bias -100 V

Target voltage -400 V

Target current 1.0 A

Oxygen mass flow rate 2.2 sccm

Argon mass flow rate 2.6 sccm

Base pressure 10-5 Torr

Working pressure 3 mTorr
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The (Table 1) shows the summary of the experimental parameters set to the

experiment.

The crystalline planes were identified by the SHIMADZU XRD-6000 equipment,

using 2θ diffraction angle, with radiation Cu Kα 1,5406 Å.

The chemical composition and also the film thickness were measured by energy dis-

persive X-ray fluorescence spectrometer (EDX), SHIMADZU EDX-720 model, adjusted

in the fp thin films mode to get the signal from a solid state X-ray detector, which was

in good agreement with confocal measurements. Follow below the procedure used:

1. Measure the raw substrate in order to identify its own composition;

2. Insert the composition data about the raw material for thickness identification

using the fp thin films mode and measure some samples to verify the accuracy,

comparing the results with the preview confocal measures;
Figure 2 Voltage applied and current measured. The green curve shows the voltage bias pulses and
the blue one shows the respectively current trough the substrate (example for 70% duty cycle;
50 V/div; 2A/div).



Table 2 Summary of the experimental results for films deposited with Vbias = −100 V
pulsed at 100 kHz

–Duty cycle Av. grain size Av. surface roughness (Sa) Nb/Ti (%wt)

(a) raw substrate - 1.35 nm -

(b) 30%; 90 nm 1.58 nm

0.12±0.01(c) 50%; 100 nm 2.13 nm

(d) 70%; 145 nm 4.17 nm
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3. Measure the samples using the bulk fp method for wavelength-dispersive

spectrometers.

It is important to clarify that the equipment used does not measure small atoms like

oxygen.

For the characterization of the surface morphology and roughness in nanometer scale

was used a NANOSURF AFM NANITE B S200 equipment, adjusted in the dynamic

force mode (constant height).

The average films thickness measured by EDX was (0.28 ± 0.05) μm and its chemical

composition is showed in Table 2.
Results and discussion
The (Figure 3) shows the XRD pattern for films deposited at different duty cycles. It is

observed that the rutile peak (110) has a strong increase in intensity with increasing
Figure 3 X-ray diffraction pattern of TiO2:Nb films on stainless steel substrate as a function of duty
cycle, for -100 V and 100 kHz: Rutile peaks (red) and substrate peaks (black). The plane (101) (green)
indicates the presence of anatase. Letters (a), (b), (c) and (d) are index for relating with (Figure 4) and
(Table 2). The substrate composition indicated in (a) represents the percentage of each element in mass
(in relation to 100%).
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duty cycle from 30% up to 70%. Besides that, others rutile peaks of very low intensity

(101), (200), (111), (211) and (220) are also identified. The (111) and (200) peaks cor-

respond to the iron alpha phase (α-Fe) of the stainless steel substrate. For 30% duty

cycle there is also a shoulder indicating the presence of (101) anatase (25°) in green.

According to (Figure 3), depending on the duty cycle adjustment, the TiO2 nucleation

can favor the rutile crystalline structures.

The (Figure 4) shows the AFM images for the films deposited at different duty cycles.

The grain size increases with increased duty cycle, as well the average surface

roughness.

The (Table 2) shows a summary of roughness and grain size measurements. The

grain size was calculated by CTR AFM software, using the surface profile (dark for val-

leys and bright for peaks and vice-versa), and the average value was calculated for each

condition (b), (c) and (d). Similarly, the average surface roughness “Sa” was calculated

using (eq. 1) taking as reference the AFM NANITE B S200 manual.

Sa ¼ 1
MN

XM−1

k¼0

XN−1

l¼0
Z Xk;Xl
� ��� �� ð1Þ

where, z (xk,xl) is the peak intensity for each (k,l) point.
Figure 4 Non Contact AFM images for different duty cycles. a) raw substrate; b) 30% duty cycle; c) 50
duty cycle and d) 70% duty cycle. Scan size 3.0 × 3.0 μm2.
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By comparing the AFM and XRD results it is possible to correlate the crystallinity and

roughness: both increased with the duty cycle. The increased duty cycle means a larger

bombardment time and as consequence promotes higher energy delivered to the film.

Conclusions
The results showed that the pulsed bias can produce significantly changes on the

roughness and the growth of crystalline phases in the film: the rutile phase and rough-

ness are favoured when the substrate is subjected to a higher energy bombardment. For

the conditions described in this work, the TiO2:Nb film formed is rather rutile with

preferencial growth (110).

It is observed that increasing the duty cycle from 30% up to 70% (for peak Vbias = −100 V

and 100 kHz) increases the intensity of the rutile (110) as well the nanometric grain size of

the film deposited. It is also verified that the average surface roughness increases almost

three times by increasing the duty cycle from 30% up to 70%.

Finally, based on the results observed, it is possible to conclude that by setting the

duty cycle of the pulsed voltage applied to the substrate allows the control of the film

roughness and grain size that can be used, for example, for potential benefits at adhe-

sion clinical applications.
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