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Background
It is usually challenging to achieve surfaces that are highly adhesive, yet can be detached 
easily. Geckos’ foot hairs, however, can be easily detached from a surface even though 
they adhere to it strongly enough to hold the animal’s body against gravity. Inspired by 
Nature, a combination of strong adhesion and easy detachment in adhesion system can 
be achieved and the possibility of reversible adhesion will be opened up.

Geckos’ ability to climb vertical walls and hang upside-down on ceilings have attracted 
the attention of numerous scientists who, through careful observations, have linked 
these remarkable properties to microscopic hairs present on the surface of gecko’s foot 
[1–4]. These findings were corroborated by measurements of the adhesive force of a 
single gecko foot hair [5]. Insects, such as beetles, also use foot hairs to improve their 
grip on surfaces [6, 7]. Several devices mimicking these foot hairs were fabricated, which 
showed improved adhesive properties [8–14].

In particular, a mushroom-like structure exhibited strong adhesive behavior by equal-
izing the stress distribution at a contact tip [15–19]. In contrast, an asymmetric stress 
distribution lowers the detachment force. When a tangential force is applied, a moment 
is generated in the structure and the stress at the contact area is asymmetrically distrib-
uted. The stress at the contact edge increases with the applied moment until the stress 
is reached at which point the detachment occurs [20]. Hence, the detachment force 
decreases when the moment increases, and the control of the moment is an important 
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factor for the reversible attachment and detachment processes. The detachment mecha-
nism of straight beam adhesive devices has been investigated by analyzing the stress dis-
tribution at the contact tip [21–23].

The moment acting on the structure, and hence the detachment condition, depends 
on the pulling angle. When the adhesive structure is vertical, the detachment force is 
a symmetric function of the pulling angle [22]. However, when the structure is tilted, 
the relationship between the detachment force and the pulling angle becomes asym-
metric. Specifically, the detachment force increases in the direction of the structure tilt 
and decreases in the opposite direction [23]. Therefore, this asymmetry arises from the 
inclination of the structure, and the adhesion strength can be controlled by changing the 
angle of the force. In this paper, the effect of tip shape on the asymmetric of the detach-
ment force is experimentally investigated by fabricating tilted beam arrays with various 
tip shapes.

Methods
Device preparation

The manufacturing process of oblique beam arrays is shown schematically in Fig. 1a. A 
negative mold is composed of 3 parts: a milled metallic mold, a glass plate, and a glass fix-
ing plate. A two-component silicone rubber (Base resin: KE-106, Hardener: CAT-RG, mix-
ing ratio 10:1 by weight, Shin-Etsu Chemical Co., Ltd., Japan) was poured into the mold. 
The filled mold was transferred to a vacuum deaerator and subsequently cured at 140 °C 
for 3 h in an electric furnace. A representative images of the fabricated array is shown in 
Fig. 1b. Each device is composed of an array of 18 tilted beam structures. The tilting angle 
θ, height h, and width b, (see Fig. 1c), were 60°, 1 mm, and 2.5 mm, respectively.

Molds with different tip shapes were manufactured by mechanically milling the metal-
lic mold using a micro end mill. Although, in principle, this technique allows fabricating 
molds with arbitrary tip shapes, in practice, oversized or complex tip shapes are difficult 
to release without damaging the cast. For this reason, only certain tip shapes, similar to 
those shown in Fig. 2, were fabricated successfully. The devices types 1, 2, and 3 in Fig. 2 
exhibit tilted beam structures with thickness H =  500, 625, and 750  μm, respectively 
(denoted as S100%, S125%, and S150%, respectively). Devices types 4 and 5 have features 
similar to types 1–3, except that the tips are elongated at the rear (heel-like elongation) 
with the width W 1.25 and 1.5 times larger than Type 1, respectively (denoted as H125% 
and H150%). The type 6 device has beams with tips elongated at the front (toe-like 

(a)

(b)

(c) (d)
Fig. 1  a Schematics of the device fabrication process, b a picture of fabricated device, c a schematic of side 
and top views of each tilted beam structure, and d schematics of experimental setup for measuring device 
adhesion versus pulling angle
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elongation) and the width 1.5 times larger than Type 1 (denoted as T150%). Type 7 has 
tips elongated 1.25 times at the rear and 1.5 times at the front (i.e., 75% wider) compared 
with Type 1, (denoted as HT175%).

Experimental setup

The adhesive device was mounted on a motorized rotary stage, wiped clean with ethanol, 
and placed in contact with a glass plate (also previously cleaned with ethanol). Subse-
quently the device was turned to a predefined angle φ with respect to the vertical direc-
tion and moved upward with a motorized linear stage at a speed of 0.1 mm/s, as shown 
in Fig. 1d, until the glass plate detached from the device. The detachment force F was 
measured as a function of the pulling angle φ using a tuning-fork load sensor type elec-
tric balance (HJRII-2200, Shinko Denshi Co., LTD., Japan) with a resolution of 0.01 gf. 
The normal and tangential forces at the detachment were calculated using the equations: 
FN = F sin φ and FT = F cosφ.

Adhesion criterion

Adhesion between the tip surface and the glass surface is due to intermolecular inter-
actions, and detachment occurs when the maximum stress at the interface reaches the 

Fig. 2  Side view of various fabricated adhesive devices
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limiting stress of adhesion. In the case for the device with the straight structure, such 
as Type 1, 2, or 3, the detachment condition has been theoretically modeled and experi-
mentally investigated [20, 22, 23]. When the force is applied in the beam tilting direc-
tion, i.e., φ = θ, there is no moment acting on the beams and the stress is symmetrically 
distributes at the contact point, thereby maximizing the detachment force. When the 
force is applied at an angle φ < θ, the stress at the front edge of the tip increases and the 
detachment occurs from the “toe” side, as shown in Fig. 3a. When the force is applied 
in the opposite direction, i.e., φ > θ, the stress at the rear edge of the tip increases and 
the detachment occurs from the “heel” side, as shown in Fig. 3b. The detachment con-
dition as a function of the normal and tangential forces (FN-FT), and the pulling angle 
(F-φ) is shown diagrammatically in Fig. 3c, d, respectively. Dashed green lines represent 
detachment from the toe side and dashed-dotted blue lines represent detachment from 
the heel side. The area of the FN-FT relation is related to the contact condition.

Stress distribution at the contact changes when the tip shape changes. When the tip 
shapes contribute to the relaxation of the stress concentration at the edge of the tip, the 
detachment force increases. In contrast, when they contribute to enhance the stress con-
centration, the detachment force decreases.

Results and discussion
The detachment condition of devices with different tip shapes was measured for a wide 
range of pulling angles. The results are represented as FN-FT and F-φ plots in Fig. 4 in 
the case of S100%, S125%, and S150% devices. The detachment force increased with the 
thickness H, (or tip width W), and decreased with the aspect ratio h/H cos θ (because h 
is constant). It has been suggested theoretically that the area of the FN-FT plots increases 
with the inverse of the aspect ratio [22], and our results are well described by these 
models. The results pertaining devices Types 4 and 5 are shown in Figs.  5 and 6. The 
detachment force slightly increased compared to straight structures with the same W. 
The detachment force increment was more significant for the region of φ > θ than that 
of φ < θ, i.e. the stress at the rear edge was more relaxed, in the case of H125%. Con-
versely, the stress at both side was relaxed about the same in the case of H150%. The 
stress relaxation at the edge of the tip was likely due to the tip widening, i.e. constricted, 
generated by the heel structure, which is similar to mushroom-shaped structures [16], 
albeit less significant. The results of devices T150%, S100%, and S150% are compared 
in Fig. 7. In the region of φ > θ (i.e. detachment from the heel side), T150% exhibit a 
similar behavior as S100%, whereas in the region of φ < θ, (i.e., the detachment from the 

(a) (b) (c) (d)
Fig. 3  Schematics of detachment in the case for a φ < θ and b φ > θ. Additionally, the detachment condi-
tions are shown in c FN-FT relation and d F-φ relation diagram
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Fig. 4  Experimental results of S100%, S125%, and S150% adhesive devices a FN-FT relation, and b F-φ relation
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Fig. 5  Experimental results of S125% and H125% adhesive devices a FN-FT relation, and b F-φ relation
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Fig. 6  Experimental results of S150% and H150% adhesive devices a FN-FT relation, and b F-φ relation
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toe side) the behavior is similar to S150%. Further, the detachment condition shifted in 
the vicinity of φ = θ, the asymmetry of the FN-FT relation was enhanced, with stronger 
adhesion in the region φ < θ and easier detachment in the region of φ > θ. It is consid-
ered that the stress at the front edge was relaxed due to the toe structure, whereas the 
stress at the rear edge was not affected because the rear edge structure of T150% is same 
as that of S100%. Finally, the results of HT175% structure are shown in Fig. 8 compared 
with the H125% and T150% data. Although the structure of HT175% is the combination 
of H125% and T150%, the results were more similar to sample H125%, and the effect of 
the toe elongation was negligible, which indicated that the stress was not relaxed at the 
front edge. When the force is applied at an angle φ < θ, the rear edge of the structure can 
be deformed in the case of T150%. The heel structure, however, prevents it for HT175%. 
That might be one of the reasons to generate the difference at the detachment force 
between T150% and HT175% in the region of φ < θ. Although HT175% has the largest 
tip size, the maximum detachment force was not increased. These findings suggest that 
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Fig. 7  Experimental results of S100%, S150%, and T150% adhesive devices a FN-FT relation, and b F-φ relation
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the additional tip structures on both side of the tip edges do not promote strong and 
asymmetric adhesion.    

Different from the vertical structures, the oblique structures give rise to an asymmet-
ric detachment. Moreover, the detachment condition can be tuned by varying the tip 
structure of oblique beam arrays, and the asymmetric property can be changed. There-
fore, optimum design of the tip shape has a potential to make more creative adhesive 
devices in accordance with the intended use.

Conclusions
Adhesive devices consisting of silicone rubber oblique beam arrays were fabricated, 
and their detachment force was experimentally investigated as a function of the pulling 
angle. Metallic molds with different tip shapes were used to fabricate different beam tip 
shapes: straight, heel-like elongation, toe-like elongation, and both heel-like and toe-like 
elongation.

Detachment occurs when the maximum stress at the contact tip overcomes the limit-
ing stress for adhesion. Although the asymmetric dependence of the normal and tangen-
tial forces at the detachment can be obtained with a tilted beam structure, the beam tip 
shape also affects this dependence. In the case of tips with heel elongation, the overall 
detachment force increased compared with straight tip structures. In the case of tips 
with toe elongation, the intensity of the detachment force on the pulling angle and its 
asymmetry differed from those of the other samples. These findings demonstrate that 
the anisotropic friction behavior of oblique beam arrays can be enhanced by tuning the 
geometry of the beam tips.
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