Finn SR, He Y-F, Springer GS, Lee H-J. Compressive strength of damaged and repaired composite plates. J Compos Mater. 1992;16(12):1797–825.
Google Scholar
Myhre SH, Labor JD. Repair of advanced composite structures. J Aircraft. 1981;18(7):546–52.
Article
Google Scholar
Markatos DN, Tserpes KI, Rau E, Markus S, Ehrhart B, Pantelakis S. The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical use. Compos Part B Eng. 2013;45(1):556–64.
Article
CAS
Google Scholar
Robson J, Matthews F, Kinloch A. The bonded repair of fibre composites: effect of composite moisture content. Compos Sci Technol. 1994;52:235–46.
Article
CAS
Google Scholar
Cheng P, Gong X-J, Hearn D, Aivazzadeh S. Tensile behaviour of patch-repaired CFRP laminates. Compos Struct. 2011;93(2):582–9.
Article
Google Scholar
Hu FZ, Soutis C. Strength prediction of patch-repaired CFRP laminates loaded in compression. Compos Sci Technol. 2000;60:1103–14.
Article
CAS
Google Scholar
Asp L. The effect of moisture and temperature on the interlaminar delamination toughness of carbon/epoxy composites. Compos Sci Technol. 1998;58:967–77.
Article
CAS
Google Scholar
Akay M, Kong S, Stanely A. Influence of moisture on the thermal and mechanical properties of autoclaved and oven cured Kevlar-49/epoxy laminates. Compos Sci Technol. 1997;57:565–71.
Article
CAS
Google Scholar
Nugroho AM, Ahmad MH, Ossen DR. A preliminary study of thermal comfort in Malaysia’s single storey terraced houses. J Asian Archit Build Eng. 2002;6:176–82.
Google Scholar
Bendemra H, Compston P, Crothers PJ. Optimisation study of tapered scarf and stepped-lap joints in composite repair patches. Compos Struct. 2015;130:1–8.
Article
Google Scholar
Breitzman TD, Iarve EV, Cook BM, Schoeppner GA, Lipton RP. Optimization of a composite scarf repair patch under tensile loading. Compos Part A Appl S. 2009;40(12):1921–30.
Article
CAS
Google Scholar
Coelho SRM, Reis PNB, Ferreira JAM, Pereira AM. Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Compos Struct. 2017;168:259–65.
Article
Google Scholar
Gong X-J, Cheng P, Aivazzadeh S, Xiao X. Design and optimization of bonded patch repairs of laminated composite structures. Compos Struct. 2015;123:292–300.
Article
Google Scholar
Jefferson Andrew J, Arumugam V. Effect of patch hybridization on the tensile behavior of patch repaired glass/epoxy composite laminates using acoustic emission monitoring. Int J Adhes Adhes. 2017;74:155–66.
Article
CAS
Google Scholar
Jefferson Andrew J, Srinivasan SM, Arockiarajan A. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates. Compos Struct. 2018;184:848–59.
Article
Google Scholar
Liu B, Xu F, Feng W, Yan R, Xie W. Experiment and design methods of composite scarf repair for primary-load bearing structures. Compos Part A Appl S. 2016;88:27–38.
Article
Google Scholar
Wang CH, Gunnion AJ. On the design methodology of scarf repairs to composite laminates. Compos Sci and Technol. 2008;68(1):35–46.
Article
CAS
Google Scholar
Abdel Wahab MM. Fatigue in adhesively bonded joints: a review. ISRN Mater Sci. 2012;2012:1–25.
Article
CAS
Google Scholar
Banea MD, da Silva LFM. Adhesively bonded joints in composite materials: an overview. Proc Inst Mech Eng L. 2009;223(1):1–18.
Google Scholar
Budhe S, Banea MD, de Barros S, da Silva LFM. An updated review of adhesively bonded joints in composite materials. Int J Adhes Adhes. 2017;72:30–42.
Article
CAS
Google Scholar
Chaves FJP, da Silva LFM, de Moura MFSF, Dillard DA, Esteves VHC. Fracture mechanics tests in adhesively bonded joints: a literature review. J Adhes. 2014;90:955–92.
Article
CAS
Google Scholar
Heshmati M, Haghani R, Al-Emrani M. Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: state of the art. Compos Part B Eng. 2015;81:259–75.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive. J Adhes. 2015;91:331–46.
Article
CAS
Google Scholar
da Silva LFM, Carbas RJC, Critchlow GW, Figueiredo MAV, Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int J Adhes Adhes. 2009;29(6):621–32.
Article
CAS
Google Scholar
Meneghetti G, Quaresimin M, Ricotta M. Influence of the interface ply orientation on the fatigue behaviour of bonded joints in composite materials. Int J Fatigue. 2010;32(1):82–93.
Article
CAS
Google Scholar
Mokhtari M, Madani K, Belhouari M, Touzain S, Feaugas X, Ratwani M. Effects of composite adherend properties on stresses in double lap bonded joints. Mater Des. 2013;44:633–9.
Article
CAS
Google Scholar
Moradi A, Carrère N, Leguillon D, Martin E, Cognard JY. Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: effect of material and geometrical parameters. Int J Adhes Adhes. 2013;47:73–82.
Article
CAS
Google Scholar
Song M-G, Kweon J-H, Choi J-H, Byun J-H, Song M-H, Shin S-J, Lee T-J. Effect of manufacturing methods on the shear strength of composite single-lap bonded joints. Compos Struct. 2010;92(9):2194–202.
Article
Google Scholar
Viana G, Costa M, Banea MD, da Silva LFM. A review on the temperature and moisture degradation of adhesive joints. Proc Inst Mech Eng L. 2016;231(5):488–501.
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG, Sato C. Smart Adhesive joints: an overview of recent developments. J Adhes. 2014;90(1):16–40.
Article
CAS
Google Scholar
Kumar S, Sridhar I. Special issue on ‘mechanics of composite adhesive joints and repairs. J Adhes Sci Technol. 2017;31(19–20):2089–91.
Article
CAS
Google Scholar
Pimenta S, Pinho ST. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manage. 2011;31(2):378–92.
Article
CAS
Google Scholar
Katnam KB, da Silva LFM. Special issue on primary bonded repairs in composite structures. J Adhes. 2014;91(1–2):1–3.
Google Scholar
Armstrong K. Effects of absorbed water in CFRP composites on adhesive bonding. Int J Adhes Adhes. 1996;16:21–8.
Article
CAS
Google Scholar
Kohli DK. Improved 121 °C curing epoxy film adhesive force composite bonding and repair applications: FM300-2 adhesive system. Int J Adhes Adhes. 1999;19:231–42.
Article
CAS
Google Scholar
Wang J, Zhou Z, Vodicka R, Chiu WK. Selection of patch and adhesive materials for helicopter battle damage repair applications. Compos Struct. 2009;91(3):278–85.
Article
Google Scholar
Choi HS, Jang YH. Bondline strength evaluation of cocure/precured honeycomb sandwich structures under aircraft hygro and repair environments. Compos Part A Appl S. 2010;41(9):1138–47.
Article
CAS
Google Scholar
Hayes-Griss JM, Gunnion AJ, Afaghi Khatibi A. Damage tolerance investigation of high-performance scarf joints with bondline flaws under various environmental, geometrical and support conditions. Compos Part A Appl S. 2016;84:246–55.
Article
Google Scholar
Préau M, Hubert P. Processing of co-bonded scarf repairs: void reduction strategies and influence on strength recovery. Compos Part A Appl S. 2016;84:236–45.
Article
CAS
Google Scholar
Chong HM, Liu SL, Subramanian AS, Ng SP, Tay SW, Wang SQ, Feih S. Out-of-autoclave scarf repair of interlayer toughened carbon fibre composites using double vacuum debulking of patch. Compos Part A Appl S. 2018;107:224–34.
Article
CAS
Google Scholar
Parker B. Some effects of absorbed water in CFRP composites on adhesive bonding. Compos Struct. 1986;6:123–39.
Article
Google Scholar
Kassapoglou C, Rangelov K, Rangelov S. Repair of composites: design choices leading to lower life-cycle cost. Appl Compos Mater. 2017;24(4):945–63.
Article
Google Scholar
Armstrong KB, Cole W, Bevan WG. Care and repair of advanced composites. London: SAE International; 2005.
Google Scholar
Parker B. The effect of composite pre-bond moisture on adhesive-bonded CFRP-CFRP joint. Composites. 1983;14(3):226–32.
Article
CAS
Google Scholar
Bowditch MR. The durability of adhesive joints in the presence of water. Int J Adhes Adhes. 1996;16:73–9.
Article
CAS
Google Scholar
Charalambides MN, Hardouin R, Kinloch AJ, Matthews FL. Adhesively-bonded repairs to fibre-composite materials I: experimental. Compos Part A Appl S. 1998;29A:1371–81.
Article
CAS
Google Scholar
Blackman BRK, Johnsen BB, Kinloch AJ, Teo WS. The effects of pre-bond moisture on the fracture behaviour of adhesively-bonded composite joints. J Adhes. 2008;84(3):256–76.
Article
CAS
Google Scholar
Guermazi N, Tarjem AB, Ksouri I, Ayedi HF. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos Part B Eng. 2016;85:294–304.
Article
CAS
Google Scholar
Ameli A, Papini M, Spelt JK. Hygrothermal degradation of two rubber-toughened epoxy adhesives: application of open-faced fracture tests. Int J Adhes Adhes. 2011;31(1):9–19.
Article
CAS
Google Scholar
Loh WK, Crocombe AD, Abdel Wahab MM, Ashcroft IA. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int J Adhes Adhes. 2005;25(1):1–12.
Article
CAS
Google Scholar
Pavlidou S, Papaspyrides CD. The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. Compos Part A Appl S. 2003;34(11):1117–24.
Article
CAS
Google Scholar
Ray BC. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J Colloid Interf Sci. 2006;298(1):111–7.
Article
CAS
Google Scholar
Zhang Y, Adams RD, da Silva LFM. Absorption and glass transition temperature of adhesives exposed to water and toluene. Int J Adhes Adhes. 2014;50:85–92.
Article
CAS
Google Scholar
Banea MD, da Silva LFM. The effect of temperature on the mechanical properties of adhesives for the automotive industry. Proc Inst Mech Eng L. 2010;224(2):51–62.
Google Scholar
Ashcroft IA, Hughes DJ, Shaw SJ. Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading. Int J Adhes Adhes. 2001;21:87–99.
Article
CAS
Google Scholar
Jia Z, Hui D, Yuan G, Lair J, Lau KT, Xu F. Mechanical properties of an epoxy-based adhesive under high strain rate loadings at low temperature environment. Compos Part B Eng. 2016;105:132–7.
Article
CAS
Google Scholar
da Silva LFM, Adams RD. Measurement of the mechanical properties of structural adhesives in tension and shear over a wide range of temperatures. J Adhes Sci Technol. 2004;19:109–41.
Article
Google Scholar
Banea MD, de Sousa FSM, da Silva LFM, Campilho RDSG, de Pereira AMB. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive. J Adhes Sci Technol. 2011;25(18):2461–74.
Article
CAS
Google Scholar
Frassine R, Rink M, Pavan A. Viscoelastic effects on the interlaminar fracture behavior of thermoplastic matrix composites: II. Rate and temperature dependence in unidirectional peek/carbon-fiber lamiantes. Compos Sci Technol. 1996;56:1253–60.
Article
CAS
Google Scholar
Adams RD, Coppendale J, Mallick V, AI-Hamdan H. The effect of temperature on the strength of adhesive joints. Int J Adhes Adhes. 1992;12:185–90.
Article
CAS
Google Scholar
Reis JML, Pacheco LJ, da Costa Mattos HS. Influence of the temperature and strain rate on the tensile behavior of post-consumer recycled high-density polyethylene. Polym Test. 2013;32(8):1576–81.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive. J Adhes Sci Technol. 2012;26(7):939–53.
CAS
Google Scholar
Rider AN, Wang CH, Chang P. Bonded repairs for carbon/BMI composite at high operating temperatures. Compos Compos Part A Appl S. 2010;41(7):902–12.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. Mode II fracture toughness of adhesively bonded joints as a function of temperature: experimental and numerical study. J Adhes. 2012;88:534–51.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. Effect of temperature on the shear strength of aluminium single-lap bonded joints for high temperature applications. J Adhes Sci Technol. 2014;28(14–15):1367–81.
Article
CAS
Google Scholar
Lapique F, Redford K. Curing effects on viscosity and mechanical properties of a commercial epoxy resin adhesive. Int J Adhes Adhes. 2002;22:337–46.
Article
CAS
Google Scholar
Sánchez Cebrián A, Basler R, Klunker F, Zogg M. Acceleration of the curing process of a paste adhesive for aerospace applications considering cure dependent void formations. Int J Adhes Adhes. 2014;48:51–8.
Article
CAS
Google Scholar
Fernandes RL, de Moura MFSF, Moreira RDF. Effect of temperature on pure modes I and II fracture behavior of composite bonded joints. Compos Part B Eng. 2016;96:35–44.
Article
CAS
Google Scholar
Antunes DM, Infante V, Reis A. Mechanical characterization and experimental performance of an aerospace adhesive. Eng Fail Anal. 2016;69:43–56.
Article
Google Scholar
Marques EAS, da Silva LFM, Flaviani M. Testing and simulation of mixed adhesive joints for aerospace applications. Compos Part B Eng. 2015;74:123–30.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. Mode I fracture toughness of adhesively bonded joints as a function of temperature: experimental and numerical study. Int J Adhes Adhes. 2011;31(5):273–9.
Article
CAS
Google Scholar
Banea MD, da Silva LFM, Campilho RDSG. Temperature dependence of the fracture toughness of adhesively bonded joints. J Adhes Sci Technol. 2010;24:2011–26.
Article
CAS
Google Scholar
Brewis DM, Comyn J, Shalash RJA. The effect of moisture and temperature on the properties of an epoxidepolyamide adhesive in relation to its performance in single lap joints. Int J Adhes Adhes. 1982;2(4):215–22.
Article
CAS
Google Scholar
Ou Y, Zhu D, Zhang H, Huang L, Yao Y, Li G, Mobasher B. Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (GFRP) composite under varying strain rates and temperatures. Polymers. 2016;8(5):1–16.
Article
CAS
Google Scholar
Eftekhari M, Fatemi A. Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects. Polym Test. 2016;51:151–64.
Article
CAS
Google Scholar
Mortazavian S, Fatemi A. Tensile and fatigue behaviors of polymers for automotive applications. Materialwiss Werkst. 2015;46(2):204–13.
Article
Google Scholar
De Monte M, Moosbrugger E, Quaresimin M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6—Quasi-static loading. Compos Part A Appl S. 2010;41(7):859–71.
Article
CAS
Google Scholar
Ou Y, Zhu D. Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures. Constr Build Mater. 2015;96:648–56.
Article
Google Scholar
Reis JML, Coelho JLV, Monteiro AH, da Costa Mattos HS. Tensile behavior of glass/epoxy laminates at varying strain rates and temperatures. Compos Part B Eng. 2012;43(4):2041–6.
Article
CAS
Google Scholar
Robert M, Benmokrane B. Behavior of GFRP reinforcing bars subjected to extreme temperatures. J Compos Constr. 2010;14(4):353–60.
Article
CAS
Google Scholar
Nardone F, Di Ludovico M, De Caso y Basalo FJ, Prota A, Nanni A. Tensile behavior of epoxy based FRP composites under extreme service conditions. Compos Part B Eng. 2012;43(3):1468–74.
Article
CAS
Google Scholar
Di Ludovico M, Piscitelli F, Prota A, Lavorgna M, Mensitieri G, Manfredi G. Improved mechanical properties of CFRP laminates at elevated temperatures and freeze–thaw cycling. Constr Build Mater. 2012;31:273–83.
Article
Google Scholar
Takeda N, Ogihara S. In situ observation and probablistic prediction of microscopic failure processes in CFRP cross-ply laminates. Compos Sci Technol. 1994;52:183–95.
Article
CAS
Google Scholar
Bechel VT, Camping JD, Kim RY. Cryogenic/elevated temperature cycling induced leakage paths in PMCs. Compos Part B Eng. 2005;36(2):171–82.
Article
CAS
Google Scholar
Timmerman JF, Tillman MS, Hayes BS, Seferis JC. Matrix and fiber infuences on the cryogenic microcracking of carbon fiber/epoxy composites. Compos Part A Appl S. 2002;33:323–9.
Article
Google Scholar
Schutz JB. Properties of composite materials for cryogenic applications. Cryogenics. 1998;38:3–12.
Article
CAS
Google Scholar
Dutta PK, Hui D. Low-temperature and freeze–thaw durability of thick composites. Compos Part B Eng. 1996;27B:371–9.
Article
CAS
Google Scholar
Etches J, Potter K, Weaver P, Bond I. Environmental effects on thermally induced multistability in unsymmetric composite laminates. Compos Part A Appl S. 2009;40(8):1240–7.
Article
CAS
Google Scholar
Reed RP, Golda M. Cryogenic properties of unidirectional composites. Cryogenics. 1994;34:909–28.
Article
CAS
Google Scholar
Sethi S, Ray BC. Mechanical behavior of polymer composites at cryogenic temperatures. In: Kalia SFS, editor. Polymers at cryogenic temperatures. Berlin: Springer; 2013.
Google Scholar
Drzal LT, Rich MJ, Lloyd PF. Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhes. 2006;16:1–30.
Article
Google Scholar
Bockenheimer C, Fata D, Possart W. New aspects of aging in epoxy networks. II. Hydrothermal aging. J Appl Polym Sci. 2004;91:369–77.
Article
CAS
Google Scholar
Chwala S. Characterization and modeling of the effect of environmental degradation on flexural strength of carbob/epoxy composites. Dissertation, University of Alabama, Canada; 2009.
Birger S, Moshonov A, Kenig S. The effects of thermal and hygrothermal ageing on the failure mechanisms of graphite-fabric epoxy composites subjected to flexural loading. Composites. 1989;24:341–8.
Article
Google Scholar
Sousa JM, Correia JR, Firmo JP, Cabral-Fonseca S, Gonilha J. Effects of thermal cycles on adhesively bonded joints between pultruded GFRP adherends. Compos Struct. 2018. https://doi.org/10.1016/j.compstruct.2018.02.081.
Article
Google Scholar
Elaldi F, Elaldi P. A study on curing processes and environmental effects for rapid composite repair. J Reinf Plast Compos. 2011;30(9):749–55.
Article
CAS
Google Scholar
Zhang Y, Vassilopoulos AP, Keller T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints. Compos Struct. 2010;92(7):1631–9.
Article
Google Scholar
Razak SNA, Othman AR, Sheng LW. Effect of temperature on the strength properties of adhesively single-lap bonded joint for composite laminates. Mater Mind. 2014;1:4–6.
Google Scholar
Grammatikos SA, Jones RG, Evernden M, Correia JR. Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures. Compos Struct. 2016;153:297–310.
Article
Google Scholar
Sousa JM, Correia JR, Cabral-Fonseca S, Diogo AC. Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Compos Struct. 2014;116:720–31.
Article
Google Scholar
Humfeld RG, Dillard DA. Residual stress development in adhesive joints subjected to thermal cycling. J Adhes. 1998;65:277–306.
Article
CAS
Google Scholar
Coronado P, Argüelles A, Viña J, Mollón V, Viña I. Influence of temperature on a carbon–fibre epoxy composite subjected to static and fatigue loading under mode-I delamination. Int J Solid Struct. 2012;49(21):2934–40.
Article
CAS
Google Scholar
Davidson BD, Kumar M, Soffa MA. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos Part A Appl S. 2009;40(1):67–79.
Article
CAS
Google Scholar
Melcher RJ, Johnson WS. Mode I fracture toughness of an adhesively bonded composite–composite joint in a cryogenic environment. Compos Sci Technol. 2007;67(3–4):501–6.
Article
CAS
Google Scholar
Hutapea P, Yuan FG. The effect of thermal aging on the Mode-I interlaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite. Compos Sci Technol. 1999;59:1271–86.
Article
Google Scholar
Cowley KD, Beaumont PWR. The interlaminar and intralaminar fracture toughness of carbon-fiber/polymer composites: the effect of temperature. Compos Sci Technol. 1997;97:1433–44.
Article
Google Scholar
Garg A, Ishai O. Hygrothermal influence on delamiantion behavior of graphite/epoxy laminates. Eng Fract Mech. 1985;22:413–27.
Article
CAS
Google Scholar
Thunga M, Lio WY, Akinc M, Kessler MR. Adhesive repair of bismaleimide/carbon fiber composites with bisphenol E cyanate ester. Compos Sci Technol. 2011;71(2):239–45.
Article
CAS
Google Scholar
Ashcroft IA, Hughes DJ, Shaw SJ, Wahab MA, Crocombe A. ffect of temperature on the quasi-static strength and fatigue resistance of bonded composite double lap joints. J Adhes. 2001;75:61–88.
Article
CAS
Google Scholar
Kim KY, Ye L. Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fiber/matrix adhesion. Compos Part A Appl S. 2004;35:477–87.
Article
CAS
Google Scholar
Russell AJ, Street KN. Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy: delamination and debonding of materials. Philadelphia: American Society for Testing and Materials; 1985. p. 349–70.
Google Scholar
Hashemi S, Kinloch AJ, Williams JG. The effects of geometry, rate and temperature on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly(ether-ether ketone) composites. J Compos Mater. 1990;24:918–39.
Article
CAS
Google Scholar
Lin YC, Chen X. Moisture sorption–desorption–resorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer. 2005;46(25):11994–2003.
Article
CAS
Google Scholar
Adamson MJ. Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci. 1980;15:1736–45.
Article
CAS
Google Scholar
Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C, Shanahan MER. Free/bound water absorption in an epoxy adhesive. Polymer. 2005;46(24):10733–40.
Article
CAS
Google Scholar
Moy P, Karasz FE. Epoxy-water interactions. Polym Eng Sci. 1980;20:315–9.
Article
CAS
Google Scholar
Xiang ZD, Jones FR. Effects of water on a graphite/epoxy composite. In: International conference on composite materials ICCM-9; Zaragoza: Woodhead Publishing Ltd.; 1993. p. 601.
Bordes M, Davies P, Cognard JY, Sohier L, Sauvant-Moynot V, Galy J. Prediction of long term strength of adhesively bonded steel/epoxy joints in sea water. Int J Adhes Adhes. 2009;29(6):595–608.
Article
CAS
Google Scholar
Heshmati M, Haghani R, Al-Emrani M. Effects of moisture on the long-term performance of adhesively bonded FRP/steel joints used in bridges. Compos Part B Eng. 2016;92:447–62.
Article
CAS
Google Scholar
Hua Y, Crocombe AD, Wahab MA, Ashcroft IA. Continuum damage modelling of environmental degradation in joints bonded with EA9321 epoxy adhesive. Int J Adhes Adhes. 2008;28(6):302–13.
Article
CAS
Google Scholar
Lettieri M, Frigione M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive. Constr Build Mater. 2012;30:753–60.
Article
Google Scholar
Zafar A, Bertocco F, Schjødt-Thomsen J, Rauhe JC. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Compos Sci Technol. 2012;72(6):656–66.
Article
CAS
Google Scholar
Oudad W, Madani K, Bachir Bouiadjra B, Belhouari M, Cohendoz S, Touzain S, Feaugas X. Effect of humidity absorption by the adhesive on the performances of bonded composite repairs in aircraft structures. Compos Part B Eng. 2012;43(8):3419–24.
Article
CAS
Google Scholar
Sugiman S, Crocombe AD, Aschroft IA. Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints. Int J Adhes Adhes. 2013;40:224–37.
Article
CAS
Google Scholar
Zhou J, Lucas JP. Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature. Polymer. 1999;40:5513–22.
Article
CAS
Google Scholar
LaPlante G, Lee-Sullivan P. Moisture effects on FM300 structural film adhesive: stress relaxation, fracture toughness, and dynamic mechanical analysis. J Appl Polym Sci. 2005;95(5):1285–94.
Article
CAS
Google Scholar
Xiao GZ, Shanahan MER. Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing. Polymer. 1998;39:3253–60.
Article
CAS
Google Scholar
Fernández-García M, Chiang MYM. Effect of hygrothermal aging history on sorption process, swelling, and glass transition temperature in a particle-filled epoxy-based adhesive. J Appl Polym Sci. 2002;84:1581–91.
Article
CAS
Google Scholar
Tsenoglou CJ, Pavlidou S, Papaspyrides CD. Evaluation of interfacial relaxation due to water absorption in fiber–polymer composites. Compos Sci Technol. 2006;66(15):2855–64.
Article
CAS
Google Scholar
Srivastava VK. Influence of water immersion on mechanical properties of quasi-isotropic glass fibre reinforced epoxy vinylester resin composites. Mater Sci Eng. 1999;A263:56–63.
Article
CAS
Google Scholar
Marom G. The role of water transport in composite materials. In: Comyn J, editor. Polymer permeability. New York: Elsevier; 1986. p. 341–73.
Google Scholar
Giuseppe DA, Lees R. Effect of water immersion on the interlaminar and flexural performance of low cost liquid resin infused carbon fabric composites. Compos Part B Eng. 2012;43(3):1368–73.
Article
CAS
Google Scholar
Thomason JL. The interface region in glass fibre-reinforced epoxy resin composites: 2, water absorption, voids and the interface. Composites. 1995;26:477–85.
Article
CAS
Google Scholar
Zhou J, Lucas JP. The effect of a water environment on anomalous absorption behavior in graphite/epox composites. Compos Sci Technol. 1995;53:57–64.
Article
CAS
Google Scholar
Bao L-R, Yee AF, Lee CYC. Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer. 2001;42:327–7333.
Article
Google Scholar
Apicella A, Nicolais L, Astarita G, Drioli E. Hygrothermal history dependence of moisture sorption kinetics in epoxy resins. Polym Eng Sci. 1981;21(1):18–22.
Article
CAS
Google Scholar
Chaichanawong J, Thongchuea C, Areerat S. Effect of moisture on the mechanical properties of glass fiber reinforced polyamide composites. Adv Powder Technol. 2016;27(3):898–902.
Article
CAS
Google Scholar
Kootsookos A, Mouritz AP. Seawater durability of glass- and carbon-polymer composites. Compos Sci Technol. 2004;64(10–11):1503–11.
Article
CAS
Google Scholar
Selzer R, Friedrich K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos Part A Appl S. 1997;28A:594–604.
Google Scholar
Liao K, Schultheisz CR, Hunston DL. Effects of environmental aging on the properties of pultruded GFRP. Compos Part B Eng. 1999;30:485–93.
Article
Google Scholar
Morii T, Ikuta N, Kiyosum K, Hamada H. Weight-change analysis of the interphase in hygrothermally aged FRP: consideration of debonding. Compos Sci Technol. 1997;57:985–90.
Article
CAS
Google Scholar
Weitsman YJ, Guo Y-J. A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites. Compos Sci Technol. 2002;62:889–908.
Article
CAS
Google Scholar
Mohd Ishak ZA, Ariffin A, Senawi R. Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites. Eur Polym J. 2001;37:1635–47.
Article
CAS
Google Scholar
DiBenedetto AT. Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater Sci Eng. 2001;A302:74–82.
Article
CAS
Google Scholar
Ibrahim G, Casari P, Jacquemin F, Freour S, Clement A, Celino A, Khalil K. Moisture diffusion in composites tubes: characterization and identification of microstructure-properties relationship. J Compos Mater. 2018;52(8):1073–88.
Article
CAS
Google Scholar
Wan YZ, Wang YL, Huang Y, Zhou FG, He BM, Chen GC, Han KY. Moisture sorption and mechanical degradation of VARTMed three-dimensional braided carbon–epoxy composites. Compos Sci Technol. 2005;65(7–8):1237–43.
Article
CAS
Google Scholar
Ogi K, Kim HS, Maruyama T, Takao Y. The influence of hygrothermal conditions on the damage processes in quasi-isotropic carbon/epoxy laminates. Compos Sci Technol. 1999;59:2375–82.
Article
CAS
Google Scholar
Ray BC. Effects of changing environment and loading speed on mechanical behavior of FRP composites. J Reinf Plast Compos. 2006;25(12):1227–40.
Article
CAS
Google Scholar
Bao L-R, Yee AF. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer. 2002;43:3987–97.
Article
CAS
Google Scholar
Dodiuk H, Drori L, Miller J. Preconditioning of epoxy film adhesives for bond strength improvement. Int J Adhes Adhes. 1984;4:169–70.
Article
CAS
Google Scholar
Dodiuk H, Drori L, Miller J. The effect of moisture content in epoxy film adhesives on their performance. II. T-peel and 105 °C lap shear strength. J Adhes. 2006;19:1–13.
Article
Google Scholar
Myhre SH, Labor JD, Aker SC. Moisture problems in advanced composite structural repair. Composites. 1982;13:289–97.
Article
CAS
Google Scholar
Sage GN, Tiu WP. The effect of glue line voids and inclusions on the fatigue strength of bonded joints in composites. Composites. 1982;13:228–32.
Article
CAS
Google Scholar
Budhe S, Rodríguez-Bellido A, Renart J, Mayugo JA, Costa J. Influence of pre-bond moisture in the adherents on the fracture toughness of bonded joints for composite repairs. Int J Adhes Adhes. 2014;49:80–9.
Article
CAS
Google Scholar
da Silva LFM, Adams RD, Gibbs M. Manufacture of adhesive joints and bulk specimens with high-temperature adhesives. Int J Adhes Adhes. 2004;24(1):69–83.
Article
CAS
Google Scholar
Park Y-B, Song M-G, Kim J-J, Kweon J-H, Choi J-H. Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions. Compos Struct. 2010;92(9):2173–80.
Article
Google Scholar
Parker BM. The strength of bonded carbon fibre composite joints exposed to high humidity. Int J Adhes Adhes. 1990;10(3):187–91.
Article
CAS
Google Scholar
Jeong M-G, Kweon J-H, Choi J-H. Effect of various hygrothermal environments on the failure of adhesively bonded composite single-lap joints. J Compos Mater. 2013;47(17):2061–73.
Article
Google Scholar
de Teixeira de Freitas S, Banea MD, Budhe S, de Barros S. Interface adhesion assessment of composite-to-metal bonded joints under salt spray conditions using peel tests. Compos Struct. 2017;164:68–75.
Article
Google Scholar
Mijovic J, Weinstein SA. Moisture diffusion into a graphite-epoxy composite. Polym Commun. 2003;28(8):237–9.
Google Scholar
Costa ML, de Almeida SFM, Rezende MC. Hygrothermal effects on dynamic mechanical analysis and fracture behavior of polymeric composites. Mater Res. 2005;8(3):335–40.
Article
CAS
Google Scholar
Cauich-Cupul JI, Valadez-González A, Pérez-Pacheco E, Herrera-Franco PJ. Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites. J Mater Sci. 2011;46(20):6664–72.
Article
CAS
Google Scholar
Zhong Y, Joshi SC. Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates. Mater Des. 2015;65:254–64.
Article
CAS
Google Scholar
Alessi S, Pitarresi G, Spadaro G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Compos Part B Eng. 2014;67:145–53.
Article
CAS
Google Scholar
Tsai YI, Bosze EJ, Barjasteh E, Nutt SR. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos Sci Technol. 2009;69(3–4):432–7.
Article
CAS
Google Scholar
Wan YZ, Wang YL, Huang Y, Luo HL, He F, Chen GC. Moisture absorption in a three-dimensional braided carbon/Kevlar/epoxy hybrid composite for orthopaedic usage and its influence on mechanical performance. Compos Part A Appl S. 2006;37(9):1480–4.
Article
CAS
Google Scholar
Boll DJ, Bascom WD, Motiee B. Moisture absorption by structural epoxy-matrix carbon-fiber composites. Compos Sci Technol. 1985;24:253–73.
Article
CAS
Google Scholar
Abdel-Magid B, Ziaee S, Gass K, Schneider M. The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites. Compos Struct. 2005;71(3–4):320–6.
Article
Google Scholar
LaPlante G, Ouriadov AV, Lee-Sullivan P, Balcom BJ. Anomalous moisture diffusion in an epoxy adhesive detected by magnetic resonance imaging. J Appl Polym Sci. 2008;109:1350–9.
Article
CAS
Google Scholar
Carter HG, Kibler KG. Langmuir type model for anomalous moisture diffusion in composite resins. J Compos Mater. 1978;12:118–31.
Article
Google Scholar
Lin KF, Yeh RJ. Moisture absorption behavior of rubber-modified epoxy resins. J Appl Polym Sci. 2002;86:3718–24.
Article
CAS
Google Scholar
Zhou J, Lucas JP. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer. 1999;40:5505–12.
Article
CAS
Google Scholar
El-Saad L, Darby MI, Yates B. Moisture absorption characteristics of rubber particulate filled epoxy adhesives. J Mater Sci. 1989;24(5):1653–9.
Article
CAS
Google Scholar
Song MG, Kweon JH, Choi JH. Hygrothermal effect on the strength of carbon/epoxy composite single-lap bonded joints. Int J Aeronaut space Sci. 2010;38(2):119–28.
Google Scholar
Ghazali E, Dano M-L, Gakwaya A, Amyot C-O. Experimental and numerical studies of stepped-scarf circular repairs in composite sandwich panels. Int J Adhes Adhes. 2018;82:41–9.
Article
CAS
Google Scholar
Gunnion AJ, Herszberg I. Parametric study of scarf joints in composite structures. Compos Struct. 2006;75(1–4):364–76.
Article
Google Scholar
Khan MA, Kumar S. Interfacial stresses in single-side composite patch-repairs with material tailored bondline. Mech Adv Mater Struct. 2018;25(4):304–18.
Article
Google Scholar
Kumar S, Pandey PC. Behaviour of bi-adhesive joints. J Adhes Sci Technol. 2010;24(7):1251–81.
Article
CAS
Google Scholar
Das M, Madenci E, Ambur DR. Three-dimensional nonlinear analysis of scarf repair in composite laminates and sandwich panels. J Mech Mater Struct. 2008;3(9):1641–58.
Article
Google Scholar
Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA. Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach. Int J Adhes Adhes. 2007;27(6):505–18.
Article
CAS
Google Scholar
Liu S, Cheng X, Zhang Q, Zhang J, Bao J, Guo X. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates. Compos Part B Eng. 2016;91:431–40.
Article
CAS
Google Scholar
Crocombe AD, Hua YX, Loh WK, Wahab MA, Ashcroft IA. Predicting the residual strength for environmentally degraded adhesive lap joints. Int J Adhes Adhes. 2006;26(5):325–36.
Article
CAS
Google Scholar
Fernandes RL, de Moura MFSF, Moreira RDF. Effect of moisture on pure mode I and II fracture behaviour of composite bonded joints. Int J Adhes Adhes. 2016;68:30–8.
Article
CAS
Google Scholar
de Barros S, Champaney L, Valoroso N. Numerical simulations of crack propagation tests in adhesive bonded joints. Lat Am J Solids Struct. 2012;9(3):339–51.
Article
Google Scholar
Valoroso N, de Barros S. Adhesive joint computations using cohesive zones. Appl Adhes Sci. 2013;1:1–8.
Article
Google Scholar
Ameli A, Datla NV, Azari S, Papini M, Spelt JK. Prediction of environmental degradation of closed adhesive joints using data from open-faced specimens. Compos Struct. 2012;94(2):779–86.
Article
Google Scholar
Patil OR, Ameli A, Datla NV. Predicting environmental degradation of adhesive joints using a cohesive zone finite element model based on accelerated fracture tests. Int J Adhes Adhes. 2017;76:54–60.
Article
CAS
Google Scholar